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Motivation and Introduction

Mathematical optimization and simulation plays a key role

in modern radiation therapy planning. Modern treatments

require simulations and optimization to be performed for

each patient case, which can be computationally demand-

ing. The overarching goals of this project is:

Investigate the possibilities to integrate ideas and

methods from HPC to improve treatment planning

efficiency.

Explore possibilities to move different related

computations to HPC hardware.

Improve existing algorithms within mathematical

optimization to achieve these goals.

Optimization in Radiation Therapy

minimizex f (d(x)) (objective function)

subject to ci(d(x)) ≤ 0, 1, ..., m (planning constraints)

x ∈ χ (physical constraint)

Mathematical optimization in radiation therapy is used to

find suitable treatment plans for each patient case. We have

an inverse problem, where we want to find control

parameters for the treatment machines that give desired

dose characteristics, such as high uniform dose in the tumor,

and low dose to surrounding risk organs.

Figure 1. Illustration of patient being irradiated from multiple angles. The color in the

phantom shows the accumulated dose, with red indicating higher dose.

Essentially, we shall consider three key computational

components of treatment plan optimization

1. Dose calculation to determine d(x) (often modelled as a linear

relationship d(x) = Ax).

2. Objective function evaluation f (d(x)), often weighted sum of

separate objectives

3. Optimization solver for (non-linear) problems.

Dose Summation on GPU

In spot scanning proton therapy, dose is a linear function of

spot weights, which are variables in the optimization

problem. I.e. d(x) = Ax, where A ∈ Rn×d, is a sparse matrix.

Calculating d(x) (SpMV) can be a significant bottleneck.

Move to GPU? [5]
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Figure 2. Performance comparison of dose summation implementations. Half/double is

our implementation in mixed precision.

Distributed Objective Function Evaluation

The objective f (x) is often a weighted sum of different goals

f (x) =
∑

i fi(x) [2].
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Figure 3. Illustration of distribution of work between MPI ranks.

serial 2 3 4 5 6 7 8
Nodes

0

50

100

150

200

250

Ti
m

e 
(s

)

Optimization Time / Nodes on Dardel
Total time
Function eval time
Amdahl's Law

(a) Parallel scaling on Dardel.
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(b) Parallel scaling on Kebnekaise.

Figure 4. Scaling tests on Dardel and Kebnekaise. The red line shows the Amdahl’s law

limit, due to the serial IPOPT optimizer.

Interior Point Methods (IPM) for Optimization

One of the main computational kernels in IPM is solving a

linear system arising from Newton’s method on (perturbed)

first-order optimality conditions. We investigate two

avenues:

1. Task-based parallel Cholesky Factorization for banded

matrices

2. Solving the Newton systems using iterative linear algebra

(active research topic in the optimization community)

Task-based parallel Cholesky for banded matrices

We propose a task-based parallel method for Cholesky

factorization using OpenMP tasks, and the standard

LAPACK layout for banded matrices [4].
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Figure 5. Performance comparison of banded Cholesky factorization implementations

on Kebnekaise.

Iterative Solvers for Newton Systems in IPM

System to solve is on doubly augmented form [1]:(
Q + 2BTD−1B BT

B D

)(
∆x
∆λA

)
=
(

r1 + 2BTD−1r2
r2

)
.
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Figure 6. Condition Numbers of KKT matrices.

Challenge: Ill-conditioning of linear systems. (sometimes

extreme)

Prototype Implementation

Solve KKT-system using Jacobi preconditioned conjugate

gradients. We implemented a prototype interior point

method and evaluated its performance on real-world

optimization problems from radiation therapy planning [3].
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(a) CG iterations required in each

optimizer step.
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(b) CG iterations required in each

optimizer step, with a maximum of 500.

Figure 7. CG iterations until convergence in each step in the interior point optimizer.

Our results indicated that our prototype interior point

method can find sufficiently accurate solutions in reasonable

time. Promising for GPU acceleration to extract more
performance!

Future Research Directions

Porting of the interior point method prototype to GPU

Exploring other preconditioners.

Other optimization algorithms usable? (First-order

method, unconstrained methods, etc.)

Conclusions

Modern treatment planning (in clinics) makes use of

GPU acceleration for many calculations already.

Constrained optimization algorithm remain challenging

to port.

Krylov iterative solvers show promise for problems from

radiation therapy, and may provide an avenue forward.
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