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Performance Portability Increase Scale with Mixed Precision
● Writing data snapshots is a common pattern in HPC for resilience, adjoint 

computations, and exploration of alternative paths that induces high IO overhead
● State of the art techniques like incremental checkpointing and compression do 

not take full advantage of spatial and temporal repeating patterns in the data
● We introduce a highly parallel de-duplication algorithm based on these principles

○ Identify repeating patterns with hashing that leverages spatial and temporal 
redundancy across the entire checkpoint record

○ Coalesce contiguous chunks to obtain a compact metadata representation
○ Assemble the compact metadata and unique chunks into a contiguous buffer
○ Leverage massive GPU parallelism in order to achieve high scalability

Reducing IO Overhead with De-DuplicationExascale Challenges
● HPC hardware is increasingly heterogeneous

○ Each vendor has hardware specific software stacks (Cuda, ROCm, OneAPI)
○ Ad-hoc re-engineering of codes for new hardware guarantees performance but 

is impractical due to increasing heterogeneity
● Hardware is focused on AI/ML applications rather than HPC

○ Features like half-precision increase compute but are difficult to use for HPC
○ Simulation scale is often limited by memory capacity and communication

● Growing need for data snapshots for resilience, reproducibility, and exploration
○ Storage requirements for large simulations are massive
○ IO capabilities cannot keep up with demand

We present an approach for modernizing software with the following goals:

● Attain higher performance and portability across different hardware
● Enable larger scale simulations with alternative number formats
● Enhance data snapshots with efficient data de-duplication

● Particle simulations require vast quantities of particles to model real world 
phenomenon with modern simulations reaching trillions of particles

● Simulation scale is more limited by memory than compute power
● Memory growth cannot keep up with compute growth

■ Modern CPUs support up to 6 TB of memory
■ GPUs are limited to at most 128 GB
■ Data movement between CPU and GPU is costly

● Optimize particle format with reduced precision to reduce memory usage

Particle memory usage comparison between VPIC, VPIC with our short weight (SW), constant weight (CW), 
half-precision (HP), and VPIC with both half-precision and constant weight optimizations (HP+CW).

Momentum conservation for the two-stream 
instability

Energy conservation for the Weibel instability

Format Space Reduction Accuracy (Decimal Digits)

32-bit floating-point 1.00x 7.225

16-bit floating-point 0.81x 3.311

16-bit fixed-point 0.81x 4.515

Comparison of memory usage and accuracy for single-precision, half-precision, and 16-bit fixed point formats.

Memory usage and runtime comparison of VPIC running on a V100 with our optimizations applied as the 
number of particles increases. Missing bars indicate out of memory errors.

Leveraging alternative number formats enables larger simulations while 
maintaining performance and accuracy

Accuracy can be maintained while using lower precision formats by adjusting the grid resolution.

● Kokkos alone will not attain the same level of performance as a direct port
● Using VPIC we demonstrate how to optimize for different architectures while 

remaining portable using optimizations to data layout, sorting, and vectorization 

Array of Structs vs Struct of Arrays

● Memory layout has a large impact on memory bound applications like VPIC
● Adjust data structures memory layout to favor target architecture

● Array of structs is preferred for 
CPUs since each thread can 
load particles independently. 

● Vector architectures like GPUs 
prefer struct of arrays where 
individual variables are 
contiguous

Standard Sort (CPU)

Strided Sort (GPU)

Standard sort allows individual threads to load data for different cells and process particles within the cell with 
minimal overlap between threads. Threads can collect updates from particles locally before writing results.

Strided sort helps ensure that successive threads access successive locations in memory. This helps maximize 
memory bandwidth for vector architectures like GPUs. Writes to memory are also less likely to cause conflicts.

Memory layout, sorting, and vectorization optimizations are necessary to 
achieve performance portability

Legacy Applications: VPIC

New Applications: ORANGES

Kokkos

● Vector Particle-In-Cell (VPIC)  is a high performance PIC code for plasma 
simulations:
○ Simulates magnetic reconnection, fusion, solar weather, and particle 

acceleration amongst other plasma phenomenon
○ Well optimized for CPUs but NOT for accelerators (e.g., GPUs)

● ORbit ANd Graphlet Enumeration at 
Scale (ORANGES) is a parallel graph 
application that calculates each 
vertices graphlet degree vector (GDV)

● Designed with performance portability 
in mind at the start

● Produces large amounts of data with 
sparse update patterns 

● Kokkos is a portability 
ecosystem that enables 
the creation of 
production ready parallel 
applications that are 
hardware agnostic

● Both VPIC and ORANGES 
use Kokkos for parallel 
execution

Spatial domain: Particles are distributed across 
an n-D space that is decomposed into a n-D grid

Iterative process: Four key steps define a VPIC 
iteration 

VPIC info and 
repository

Accumulate 
currents

Advance 
particles

Advance 
EM fields

Interpolate 
fields

Start

End

0

1

2 3

4 5

000200210

1

2

3

4

5

00221223

00201233

00201233

00100132

00100132

Data structures and parallel execution abstractions simplify portable applications
https://kokkos.github.io/kokkos-core-wiki/ProgrammingGuide/ProgrammingModel.html

Adjust Sorting Order Based on Architecture

● Sorting is a common part of many simulations for improving cache performance
● Switching the sorting order can lead to significant performance improvements

Vectorization Abstractions

● Portable vectorization comes in three forms: automatic, guided, and manual
● Switching from auto to guided or manual vectorization can greatly improve 

performance while remaining portable

Auto
● Use Kokkos vector 

execution policy to 
auto vectorize

● Minimal effort
● Least effective

Guided
● Vectorize sections of 

code with OpenMP 
SIMD

● Moderate effort
● Effective

Manual
● Rewrite kernels with 

explicitly SIMD types
● High effort
● Very effective

Switch to guided vectorization to improve performance without having to rewrite with explicit simd types
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Storage
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and write to storage
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Overview of our Merkle tree inspired data de-duplication method using four design principles for checkpointing. 

7 8 9 10 11 12 13 14

3 4 5 6

1 2

0

I J K L E H I J

First occurrence (New chunk) Shifted duplicate 
(Duplicate at different offset)Fixed duplicate (No change)

Header 1 612 I J K L

List Method

Tree Method

8 9 10Header 7 1312 I J K L14

Identifying contiguous repeating patterns and removing both data and 
metadata redundancy across all checkpoints reduces IO overhead and storage

Example of our tree method for de-duplicating data and 
compacting metadata.
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Comparison of different checkpoint methods. Note that 
the data chunks (      ) are much larger than the 

metadata nodes (       )
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Compare four de-duplication 

methods

● Full: save everything

● Basic: save chunks that 

change between 

checkpoints

● List: spatial-temporal 

redundancy

● Tree: spatial-temporal 

redundancy and metadata 

compaction

Hugebubbles test as chunk size varies from 32-512B. 
Smaller chunks improve de-duplication ratio and 

throughput for our tree method

Delaunay N24 strong scaling results with up to 64 GPUs. 

Our method achieves more than 100x size reduction 

De-duplication ratio and throughput for the four methods and compression techniques under a high frequency 
checkpointing situation.

Our tree method achieves 
better de-duplication ratios 

and throughput than 
compression. 
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Strided Sort
Arithmetic Intensity: 1.30
Performance: 1.65 TFLOPs
8.46% of peak FP32

Hardware Limits
Bandwidth: 1.555 TB/s
FP32: 19.5 TFLOPs

Arithmetic Intensity [FLOP/byte]

Standard Sort
Arithmetic Intensity: 3.96
Performance: 181 GFLOPs
0.93% of peak FP32

Particle Push FP32 Roofline performance on A100 GPUs

● Strided sort achieves 8.46% of peak FP32 on an 
A100 GPU and is memory bound

● Standard sort does not use available compute or 
bandwidth resources efficiently
○ Limited by memory latency rather than memory 

bandwidth or compute bound

Particle Push Runtime on dual socket EPYC 7H12

Performance differences between vectorization 
implementations 

● Basic port using Kokkos (VPIC 2.0) uses auto 
vectorization and is slower than the other options

● Using guided vectorization regains the majority of 
performance without using explicit SIMD intrinsics

● VPIC 1.2 remains the fastest due to the tuned SIMD 
intrinsics
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