
Modernizing Simulation Software for the Exascale Era
Nigel Tan, Advisor: Michela Taufer, University of Tennessee Knoxville

Performance Portability Increase Scale with Mixed Precision
● Writing data snapshots is a common pattern in HPC for resilience, adjoint

computations, and exploration of alternative paths that induces high IO overhead
● State of the art techniques like incremental checkpointing and compression do

not take full advantage of spatial and temporal repeating patterns in the data
● We introduce a highly parallel de-duplication algorithm based on these principles

○ Identify repeating patterns with hashing that leverages spatial and temporal
redundancy across the entire checkpoint record

○ Coalesce contiguous chunks to obtain a compact metadata representation
○ Assemble the compact metadata and unique chunks into a contiguous buffer
○ Leverage massive GPU parallelism in order to achieve high scalability

Reducing IO Overhead with De-DuplicationExascale Challenges
● HPC hardware is increasingly heterogeneous

○ Each vendor has hardware specific software stacks (Cuda, ROCm, OneAPI)
○ Ad-hoc re-engineering of codes for new hardware guarantees performance but

is impractical due to increasing heterogeneity
● Hardware is focused on AI/ML applications rather than HPC

○ Features like half-precision increase compute but are difficult to use for HPC
○ Simulation scale is often limited by memory capacity and communication

● Growing need for data snapshots for resilience, reproducibility, and exploration
○ Storage requirements for large simulations are massive
○ IO capabilities cannot keep up with demand

We present an approach for modernizing software with the following goals:

● Attain higher performance and portability across different hardware
● Enable larger scale simulations with alternative number formats
● Enhance data snapshots with efficient data de-duplication

● Particle simulations require vast quantities of particles to model real world
phenomenon with modern simulations reaching trillions of particles

● Simulation scale is more limited by memory than compute power
● Memory growth cannot keep up with compute growth

■ Modern CPUs support up to 6 TB of memory
■ GPUs are limited to at most 128 GB
■ Data movement between CPU and GPU is costly

● Optimize particle format with reduced precision to reduce memory usage

Particle memory usage comparison between VPIC, VPIC with our short weight (SW), constant weight (CW),
half-precision (HP), and VPIC with both half-precision and constant weight optimizations (HP+CW).

Momentum conservation for the two-stream
instability

Energy conservation for the Weibel instability

Format Space Reduction Accuracy (Decimal Digits)

32-bit floating-point 1.00x 7.225

16-bit floating-point 0.81x 3.311

16-bit fixed-point 0.81x 4.515

Comparison of memory usage and accuracy for single-precision, half-precision, and 16-bit fixed point formats.

Memory usage and runtime comparison of VPIC running on a V100 with our optimizations applied as the
number of particles increases. Missing bars indicate out of memory errors.

Leveraging alternative number formats enables larger simulations while
maintaining performance and accuracy

Accuracy can be maintained while using lower precision formats by adjusting the grid resolution.

● Kokkos alone will not attain the same level of performance as a direct port
● Using VPIC we demonstrate how to optimize for different architectures while

remaining portable using optimizations to data layout, sorting, and vectorization

Array of Structs vs Struct of Arrays

● Memory layout has a large impact on memory bound applications like VPIC
● Adjust data structures memory layout to favor target architecture

● Array of structs is preferred for
CPUs since each thread can
load particles independently.

● Vector architectures like GPUs
prefer struct of arrays where
individual variables are
contiguous

Standard Sort (CPU)

Strided Sort (GPU)

Standard sort allows individual threads to load data for different cells and process particles within the cell with
minimal overlap between threads. Threads can collect updates from particles locally before writing results.

Strided sort helps ensure that successive threads access successive locations in memory. This helps maximize
memory bandwidth for vector architectures like GPUs. Writes to memory are also less likely to cause conflicts.

Memory layout, sorting, and vectorization optimizations are necessary to
achieve performance portability

Legacy Applications: VPIC

New Applications: ORANGES

Kokkos

● Vector Particle-In-Cell (VPIC) is a high performance PIC code for plasma
simulations:
○ Simulates magnetic reconnection, fusion, solar weather, and particle

acceleration amongst other plasma phenomenon
○ Well optimized for CPUs but NOT for accelerators (e.g., GPUs)

● ORbit ANd Graphlet Enumeration at
Scale (ORANGES) is a parallel graph
application that calculates each
vertices graphlet degree vector (GDV)

● Designed with performance portability
in mind at the start

● Produces large amounts of data with
sparse update patterns

● Kokkos is a portability
ecosystem that enables
the creation of
production ready parallel
applications that are
hardware agnostic

● Both VPIC and ORANGES
use Kokkos for parallel
execution

Spatial domain: Particles are distributed across
an n-D space that is decomposed into a n-D grid

Iterative process: Four key steps define a VPIC
iteration

VPIC info and
repository

Accumulate
currents

Advance
particles

Advance
EM fields

Interpolate
fields

Start

End

0

1

2 3

4 5

000200210

1

2

3

4

5

00221223

00201233

00201233

00100132

00100132

Data structures and parallel execution abstractions simplify portable applications
https://kokkos.github.io/kokkos-core-wiki/ProgrammingGuide/ProgrammingModel.html

Adjust Sorting Order Based on Architecture

● Sorting is a common part of many simulations for improving cache performance
● Switching the sorting order can lead to significant performance improvements

Vectorization Abstractions

● Portable vectorization comes in three forms: automatic, guided, and manual
● Switching from auto to guided or manual vectorization can greatly improve

performance while remaining portable

Auto
● Use Kokkos vector

execution policy to
auto vectorize

● Minimal effort
● Least effective

Guided
● Vectorize sections of

code with OpenMP
SIMD

● Moderate effort
● Effective

Manual
● Rewrite kernels with

explicitly SIMD types
● High effort
● Very effective

Switch to guided vectorization to improve performance without having to rewrite with explicit simd types

CPU

GPU
Deduplicate data
using historical
temporal and

spatial information

Construct a compact
representation of

the metadata using
Merkle trees

Gather data chunks
and combine with
metadata to create

checkpoint

Copy
checkpoint

to CPU

Storage

Buffer checkpoints
and write to storage

RAM

Overview of our Merkle tree inspired data de-duplication method using four design principles for checkpointing.

7 8 9 10 11 12 13 14

3 4 5 6

1 2

0

I J K L E H I J

First occurrence (New chunk) Shifted duplicate
(Duplicate at different offset)Fixed duplicate (No change)

Header 1 612 I J K L

List Method

Tree Method

8 9 10Header 7 1312 I J K L14

Identifying contiguous repeating patterns and removing both data and
metadata redundancy across all checkpoints reduces IO overhead and storage

Example of our tree method for de-duplicating data and
compacting metadata.

A B C D E F G H

I J K L E H I J

Checkpoint i-1

Checkpoint i

Basic
Method

8 9 10Header 7 1312 H I J14

Full
Method

Header E H I JI J K L

Comparison of different checkpoint methods. Note that
the data chunks () are much larger than the

metadata nodes ()

I J K L

Compare four de-duplication

methods

● Full: save everything

● Basic: save chunks that

change between

checkpoints

● List: spatial-temporal

redundancy

● Tree: spatial-temporal

redundancy and metadata

compaction

Hugebubbles test as chunk size varies from 32-512B.
Smaller chunks improve de-duplication ratio and

throughput for our tree method

Delaunay N24 strong scaling results with up to 64 GPUs.

Our method achieves more than 100x size reduction

De-duplication ratio and throughput for the four methods and compression techniques under a high frequency
checkpointing situation.

Our tree method achieves
better de-duplication ratios

and throughput than
compression.

R. Bird, N. Tan, S. Luedtke, S. Harrell, M. Taufer, and B. Albright. VPIC 2.0: Next Generation Particle-in-Cell Simulations. Journal of IEEE Transactions on Parallel and
Distributed Systems (IEEE TPDS), 2734-2748, 2021.

N. Tan, R. Bird, G. Chen, S. V. Luedtke, B. Albright, and M. Taufer. Analysis of Vector Particle-In-Cell (VPIC) Memory Usage Optimizations on Cutting-Edge Computer
Architectures. In Journal of Computational Science Volume 60, April 2022, 101566, 2022.
N. Tan, R. Bird, G. Chen, and M. Taufer. Optimize Memory Usage in Vector Particle-In-Cell (VPIC) to Break the 10 Trillion Particle Barrier in Plasma Simulations. In
Proceedings of the International Conference on Computational Science (ICCS). 2021

N. Tan, J. Luettgau, J. Marquez, K. Teranishi, N. Morales, S. Bhowmick, F. Cappello, M. Taufer, and B. Nicolae. Scalable Checkpointing of Applications with Sparsely Updated
Data. In Proceedins of the 52nd International Conference on Parallel Processing (ICPP), 2023.

Strided Sort
Arithmetic Intensity: 1.30
Performance: 1.65 TFLOPs
8.46% of peak FP32

Hardware Limits
Bandwidth: 1.555 TB/s
FP32: 19.5 TFLOPs

Arithmetic Intensity [FLOP/byte]

Standard Sort
Arithmetic Intensity: 3.96
Performance: 181 GFLOPs
0.93% of peak FP32

Particle Push FP32 Roofline performance on A100 GPUs

● Strided sort achieves 8.46% of peak FP32 on an
A100 GPU and is memory bound

● Standard sort does not use available compute or
bandwidth resources efficiently
○ Limited by memory latency rather than memory

bandwidth or compute bound

Particle Push Runtime on dual socket EPYC 7H12

Performance differences between vectorization
implementations

● Basic port using Kokkos (VPIC 2.0) uses auto
vectorization and is slower than the other options

● Using guided vectorization regains the majority of
performance without using explicit SIMD intrinsics

● VPIC 1.2 remains the fastest due to the tuned SIMD
intrinsics

LA-UR-23-28993

