
The number of supersegments generated in a list is limited to a user-defined maximum      . 
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State of the art

Large distributed volume data are routinely generated in 
numerical simulations and experiments. Here, we 
propose a solution for visualizing them at smooth,
interactive frame rates, outperforming existing tools and 
techniques.

3D Volume Data

Solution Overview

1. VDI generated on distributed 
compute cluster

2. Streamed to 
visualization client

3. Interactive VDI rendering 
enabling fast viewpoint 
changes and zooming

VDI: Volumetric Depth Image [4]
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Contributions:
1. First method for generating VDIs on distributed computers.
2. Strategies for interactive in situ visualization of distributed numerical simulations.
3. Novel rendering technique for VDIs, enabling interactive visualization.
Open-source software: Contributions implemented as extension of visualization
framework scenery [4] and simulation framework OpenFPM [6].  

Direct volume rendering (DVR) on distributed compute clusters

For each pixel to be rendered, a ray is cast 
from the user’s viewpoint through the 
volume. The ray samples the volume at 
regular intervals to determine the final color 
and opacity for the pixel.

For distributed data, each processor
performs direct volume rendering on its part
of the domain to produce a “sub-image”.
These sub-images are then composited in
parallel to produce the final image. This is 
called sort-last parallel rendering.  

Volumetric Depth Images (VDIs) are view-dependent compact representations of 
volume data.

Each ray divides the data into regions of
similar color and opacity, called
supersegments. The set of supersegments
generated by a ray is called a supersegment
list, or simply list.

Each supersegment stores accumulated
color and opacity between its start and
end points, and the volume is represented 
by the set of supersegments.

The VDI is highly compressed along the view direction for which it was constructed, and 
can be rendered fast, providing high quality approximations.

supersegment

2.1 Distribute

Generating VDIs on distributed compute clusters

GPU 2

GPU 1

Problem Statement

A novel method for generating VDIs on distributed data maintaining scalability, quality, and handling non-convex domain decompositions (EGPGV 2023, Best Paper Award [1]).

Data distributed across multiple processors (e.g. GPUs). How do we generate the same
VDI, maintaining the user-provided limit      ?ℕ

ℕ

ℕ

We follow a sort-last approach, as described below:
Phase 1: sub-VDI generation

GPU 1

GPU 2

Phase 2: Parallel compositing of sub-VDIs
GPU 1

GPU 2

Performance Benchmarks

Performance Benchmarks

The end-to-end setup

Forced Isotropic Turbulence
4096 x 4096 x 4096, 16 bit

128 GiB

Rotating Strati�ed Turbulence
4096 x 4096 x 4096, 16 bit

128 GiB

Profiling the three steps in parallel compositing (Phase 2):      .

Overall VDI generation rates: The proposed compact representation is 
crucial for scalability in parallel compositing.
Overall, VDIs are generated in less than one
second when using 32 GPUs for both 
128 GiB datasets. This is smaller than typical
simulation time steps, implying the VDI 
could be used for live in situ visualization at
full temporal resolution.

Architecture for in situ visualization
We propose asynchronous execution to minimize latency, and provide an 
implementation as extension of the simulation framework OpenFPM (ISAV 2020 [2]). 

OpenFPM is an open-source framework for particle and mesh simulations. We 
extend it, transparently providing in situ 
visualization functionality requiring 
minimal changes in existing OpenFPM-
based simulation code.   

Scan the QR code for the OpenFPM framework. The in situ visualization 
functionality is currently on the insitu_visualization branch, soon to be
merged into the main branch. 

Interactive rendering of VDIs

References

A raycasting-based technique for rendering 
VDIs, outperforming existing solution by more 
than an order of magnitude 
(IEEE PacificVis, 2023 [3]).

For each pixel to be rendered, a ray is cast
through the VDI. Each ray is mapped to a single GPU 

thread. Rays intersect supersegment lists, search for
supersegments within them, accumulating color and opacity to

determine the final color and opacity of the rendered pixel.

Calculating intersection lengths is 
expensive as supersegments are
irregular pyramidal frustums in 3D. 

We optimize by projecting the VDI to
Normalized Device Coordinate (NDC) 
space, where supersegments are 
transformed into cuboids.

To minimize memory accesses, index of
the supersegment intersected in the
previous list is used as an initial guess.
To minimize memory latency, superseg-
ment depths are pre-fetched before
comparison. This increases rendering
frame-rates by up to 40%.  

Finally, the intersection points are 
projected back to view space to deter-
mine intersection length. The process
continues until the ray exits the VDI or 
opacity saturates.

Algorithm overview

Performance is further optimized by empty-space skipping and
preview rendering. VDI generation and rendering code is implem-
ented as an extension of the scenery [4] framework. 

Our method vastly outperforms the existing technique for rendering VDIs by Frey
et al. [4]. Both methods are 
tested on identical VDIs 
and hardware (an Nvidia 
RTX 3090), at different 
viewpoint deviations 
about the viewpoint from
which the VDI was 
generated.  Performance 
is measured in frames per second (fps).

VDI rendering is significantly faster than direct volume rendering, while providing
close approximations. The

adjacent  figure reports image
similarity using the SSIM [5] and 

PSNR (Peak Signal-to-Noise Ratio)
metrics.
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Compact representation

f(x, y, z) = d

Regular representation

Synchronous execution Asynchronous execution

VDI rendering provides higher frame rates
than distributed direct volume rendering
(DVR) implemented using IceT library for 
parallel compositing, which is used by popu-
lar visualization tools like ParaView and VisIt. 

For the Forced Isotropic Turbulence (FI) data:

supersegment list

At 5° rotation from viewpoint of generation
DVR (32 GPUs) VDI Rendering

At 30° rotation from viewpoint of generation
DVR (32 GPUs) VDI Rendering

At 10° rotation from viewpoint of generation
DVR (RTX 3090) VDI Rendering (RTX 3090)

VDI generation, streaming, and rendering 
provides lower latency, i.e. frame time, 
compared to remote volume rendering with 
hardware-accelerated video encoding. 

scenery framework
(VDI code currently on 

remote_volume_visualization
branch)

Single-GPU datasets

Interactive rendering videos

Larger datasets

12fps

Richtmyer-Meshkov Instability: 2048 x 2048 x 1920, 8 bit

Rayleigh-Taylor Instability: 1024 x 1024 x 1024, 16 bit

54fps, SSIM = 0.950, PSNR = 36.08 

65fps, SSIM = 0.97, PSNR = 37.76 30fps
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a) Regular representation b) Prefix sum c) Compact representationWe propose a compact representation to optimize inter-process (MPI) communication. 

Regular representation Compact representationPrefix sums
Better for rendering Better for communication
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2.2 Merge 
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GPU 1

GPU 2

Dataset
fps at 10° deviation fps at 40° deviation

Existing Ours Existing Ours

Kingsnake 11 441 10 44

Rayleigh-
Taylor 5 226 5 124
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