
Enabling Reproducibility and Scalability of Scientific Workflows in HPC and Cloud
Paula Olaya1 and Michela Taufer1 (Advisor)

University of Tennessee, Knoxville

Scientific Workflows’ Complexity
The scientific community relies on the execution of complex

workflows that sit at the intersection of HPC, cloud computing
big data analytics, and AI/ML for their scientific discovery

Challenge 1: Traceability and Explainability of Scientific Workflows

Challenge 2: Scalability of Scientific Workflows Challenge 3: Orchestration of Scientific Workflows

We create a fine-grained containerized environment that enables data
traceability and results explainability: Our environment automatically

creates a record trail and data lineage of a workflow execution and
seamlessly attaches it to the workflow components

App
1

App
2

Input Inter Out

[UUID_inp, input]

Record trail

Command line = noop

Creation_time
input

[UUID_app1, app1]

Record trail
NULL

Command line = noop

Creation_time
app1

[UUID_inter, inter]

Record trail

Command line = app1…
Creation_time

inter

[UUID_app2, app2]

Record trail
NULL

Command line = noop

Creation_time
app2

[UUID_out, output]

Record trail

Command line = app2…

Creation_time
out

Out: [UUID_inter, inter]

App: [UUID_app1, app1]

In: {[UUID_in, input]}

Out: [UUID_out, out]

App: [UUID_app2, app2]

In: {[UUID_inter, inter]}

Out: [UUID_in, input]

App: NULL

In: NULL

1. We decouple data and applications of
traditionally tightly-coupled workflows
and encapsulate them into individual
fine-grained containers

2. We augment all containers to move
data across the containerized workflow
effectively and to expose provenance
metadata

3. We provide an interface to visualize
and study the metadata so scientists
understand the data lineage and the
computational methods

A data container follows a
file-system-in-a-file model
and includes an individual
dataset (i.e., input,
intermediary, or output data)

The application container
includes the executable or
script with the respective
software stack (i.e., OS,
libraries, and packages)

The provenance metadata
exposes unique hash code
(UUID), container name,
creation time, command
line and record trail

Kubernetes
Cloud-native

service

LSF
HPC as a service

on the cloud

S3FS
Map COS into POSIX namespaces

Cloud Object Storage (COS)
Data stored as objects in buckets

We leverage cloud technology to integrate scientific
workflows in cloud-based HPC services (LSF and

Kubernetes) using Cloud Object Storage, enabling
better I/O and data scalability

We tune the advanced S3FS’s I/O
parameters (parallel count, chunking)

LSF Kubernetes

We map our infrastructure to the parallel data nature
of our scientific workflow granting I/O scalability

C
h

u
n

k
Si

ze
 [

M
B

]

R
an

k

0.2

0.4

0.6

0.8

1.0

5
10

16
24

32
40

48
52

54

5
10

16
24

32
40

48
52

54

Parallel count Parallel count
5 8 12 16 205 8 12 16 20

We observe no I/O performance
degradation in the object storage as

we increase the number of VM
instances of writing and reading in

parallel for LSF and Kubernetes (K8s)
8 16 24 32 48 94 152 225 8 16 24 32 48 94 152 225

R
ea

d
 B

W

[M
B

/s
]

W
ri

te
 B

W

[M
B

/s
]

Number of Concurrent VM Instances Number of Concurrent VM Instances

KubernetesLSF

0

4
6
8

2

10
12
14
16

0
20
40
60
80

100

Scientists need an infrastructure that efficiently writes
and reads large intermediate data and automatically

scales their scientific workflows’ execution

Workflows include many interoperable components (data and
applications) that are hard to trace and reuse to reproduce
results and integrate AI/ML methods with limited transparency

Workflows hide the complexity of large intermediate data and
their overall execution can be affected by the I/O bandwidth of
the underlying infrastructure

Workflows run on heterogeneous and distributed infrastructure
with data and application dependencies that require efficient
data management and resource allocation

Scientists need execution environments
that automatically trace data provenance
and explain results through an in-depth

data lineage and an execution trail

Scientists require tools that enable iterative development, orchestration, and
deployment of end-to-end scientific workflows

Intermediate
data

App
1

App
2Input data

Output
data

App
1

Hybrid Cloud Cluster

App
1

App
1

App
1

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

App
2

… …

Intermediate Data Output data

Open
Data Hub
Pipelines

We use Open Data Hub Pipelines to
orchestrate the end-to-end execution of
workflows in cloud-native clusters (i.e.,
Kubernetes and OpenShift) with Cloud

Object Storage. We ensure i) automated
orchestration of the workflows, ii)

efficient allocation of infrastructure
resources, and iii) reproducibility and
reusability of workflows’ executions

def app1():
 …
def app2(model):
 …

dsl.pipeline(workflow):
 for i in N:
 model=app1()
 app2(model)

TektonCompiler().
compile(pipeline,
“pipeline.yaml”) Input Data

Data
Collection

Data
Preprocessing ML Model Visualization

Analysis

Scientific workflow

Storage
technology

Deployment
platform

User defines the
pipeline using

Kubeflow Pipelines
DSL in Python and

compiles it to Tekton

Our orchestration
ensures efficient
intermediate data

allocation on NVMe
and performance
monitoring using

Grafana

