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Scientific Workflows’ Complexity Challenge 1: Traceability and Explainability of Scientific Workflows

The scientific community relies on the execution of complex Scientists need execution environments We create a fine-grained containerized environment that enables data

workflows that sit at the intersection of HPC, cloud computing | that automatically trace data provenance | traceability and results explainability: Our environment automatically
big data analytics, and Al/ML for their scientific discovery and explain results through an in-depth creates a record trail and data lineage of a workflow execution and

data lineage and an execution trail seamlessly attaches it to the workflow components
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Challenge 3: Orchestration of Scientific Workflows

Challenge 2: Scalability of Scientific Workflows

Scientists need an infrastructure that efficiently writes ( Cloud Object Storage (COS) Scientists require tools that enable iterative development, orchestration, and
and reads large intermediate data and automatically Data stored as objects in buckets deployment of end-to-end scientific workflows
scales their scientific workflows” execution
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