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Scientific Workflows’ Complexity
The scientific community relies on the execution of complex 

workflows that sit at the intersection of HPC, cloud computing 
big data analytics, and AI/ML for their scientific discovery 

Challenge 1: Traceability and Explainability of Scientific Workflows

Challenge 2: Scalability of Scientific Workflows Challenge 3: Orchestration of Scientific Workflows

We create a fine-grained containerized environment that enables data 
traceability and results explainability: Our environment automatically 

creates a record trail and data lineage of a workflow execution and 
seamlessly attaches it to the workflow components
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1. We decouple data and applications of 
traditionally tightly-coupled workflows 
and encapsulate them into individual 
fine-grained containers

2. We augment all containers to move 
data across the containerized workflow 
effectively and to expose provenance 
metadata

3. We provide an interface to visualize 
and study the metadata so scientists 
understand the data lineage and the 
computational methods

A data container follows a 
file-system-in-a-file model 
and includes an individual 
dataset (i.e., input, 
intermediary, or output data)

The application container 
includes the executable or 
script with the respective 
software stack (i.e., OS, 
libraries, and packages) 

The provenance metadata 
exposes unique hash code 
(UUID), container name, 
creation time, command 
line and record trail

Kubernetes
Cloud-native 

service

LSF
HPC as a service 

on the cloud 

S3FS
Map COS into POSIX namespaces

Cloud Object Storage (COS)
Data stored as objects in buckets

We leverage cloud technology to integrate scientific 
workflows in cloud-based HPC services (LSF and 

Kubernetes) using Cloud Object Storage, enabling 
better I/O and data scalability

We tune the advanced S3FS’s I/O 
parameters (parallel count, chunking)

LSF Kubernetes

We map our infrastructure to the parallel data nature 
of our scientific workflow granting I/O scalability
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Parallel count Parallel count
5 8 12 16 205 8 12 16 20

We observe no I/O performance 
degradation in the object storage as 

we increase the number of VM 
instances of writing and reading in 

parallel for LSF and Kubernetes (K8s)
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Scientists need an infrastructure that efficiently writes 
and reads large intermediate data and automatically 

scales their scientific workflows’ execution

Workflows include many interoperable components (data and 
applications) that are hard to trace and reuse to reproduce 
results and integrate AI/ML methods with limited transparency 

Workflows  hide the complexity of large intermediate data and 
their overall execution can be affected by the I/O bandwidth of 
the underlying infrastructure

Workflows run on heterogeneous and distributed infrastructure 
with data and application dependencies that require efficient 
data management and resource allocation

Scientists need execution environments 
that automatically trace data provenance 
and explain results through an in-depth 

data lineage and an execution trail 

Scientists require tools that enable iterative development, orchestration, and 
deployment of end-to-end scientific workflows
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Open 
Data Hub
Pipelines

We use Open Data Hub Pipelines to 
orchestrate the end-to-end execution of 
workflows in cloud-native clusters (i.e., 
Kubernetes and OpenShift) with Cloud 

Object Storage. We ensure i) automated 
orchestration of the workflows, ii) 

efficient allocation of infrastructure 
resources, and iii) reproducibility and 
reusability of workflows’ executions  

def app1():
    …
def app2(model):
    …

dsl.pipeline(workflow):
   for i in N:
       model=app1()
      app2(model)

TektonCompiler().
compile(pipeline, 
“pipeline.yaml”) Input Data
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User defines the 
pipeline using 

Kubeflow Pipelines 
DSL in Python and 

compiles it to Tekton

Our orchestration 
ensures efficient 
intermediate data 

allocation on NVMe 
and performance 
monitoring using 

Grafana


