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Tree ensembles, random forests and gradient boosted trees, are useful in resource-limited machine learning deployment. Traversing tree data structures is not cache friendly, which results in high latency during inference   Moreover, 
existing tree ensemble frameworks are designed for batch throughput and require the model to fit in RAM.. We introduce two systems BLOCKSET and T-REX to alleviate these issues. BLOCKSET serializes gradient-boosted trees and 
random forests to optimize inference latency when models are not loaded into memory . We pack tree nodes and paths together using node access probabilities in a block-aligned fashion to reduce I/Os. T-REX performs efficient 
inference more generally – even when the models are stored in memory by mapping tree traversals to hyperrectangle enclosures due to the observation that decision trees partition d-dimensional spaces to convex polytopes.

BLOCKSET reads a trained tree 
ensemble,  applies node 
packing optimizations and 
finally performs inference on 
the packed model

Block-aligned layout of the interior nodes of a classification forest with a block size of 
4 nodes. The top nodes (1A-4C) are interleaved . The highest cardinality paths are 
grouped into blocks. Colors indicate block boundaries for residuals.

CONTRIBUTION 2: A Scalable Model 
Repository For Transfer Learning 
With Efficient Tensor Access

Project 1: BLOCKSET (Block Aligned Serialized Trees)

CONTRIBUTION 1: Inference Latency Reduction in Tree Ensemble Models

Project 2: T-REX (Tree Rectangles)

• This graph shows average inference latency 
compared to existing layouts.

• BLOCKSET reduces inference latency by 2-
5x times over existing methods and a 100x 
reduction.

• It reduces memory requirements by 100x 
because the model is stored on the disk
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I.  Distance Filter: Index Construction
1. Order hyperrectangles by the Hilbert number of the projected
leaf centroids.
2. Combine the Hilbert cubes into regions along the space-filling 
curve so that each region contains a block’s worth of centroids. 
The distinct colors represent regions (left) and blocks (below).
3.  Build an index (below left) that maps regions of the 
Hilbert curve blocks.

II.  Distance Filter: Querying
1. Find the Hilbert numbers of the cube that contains the test 
observation and all adjacent cubes (dashed box).
2.  Retrieve the block addresses of the Hilbert numbers from the 
index.
3. Retrieve the hyperrectangle boundaries from the blocks (below).
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Test Data
Hilbert Indices Block Addresses
1-9 0
10-16 1

17-34 2
35-54 3

55-64 4

The Hilbert ids corresponding to the test observation and its 
immediate neighbors are (34,47,48,49,50,51,52,53,56)
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128-bit Vectors

Note:
• TRD: Test Rounded Down
• TRU: Test Rounded Up

Code to Vectorize Point Enclosure

__m128i range_compare(__m128i U, __m128i 
TRD, __m128i TRU, __m128i L)
{

return  (__mm_cmpgt_epi(U, TRD) |
__mm_cmpeq_epi(U, TRD) ) &
(__mm_cmpgt_epi(TRU, L) |
__mm_cmpeq_epi(TRU, L) ) ;

}
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PROBLEM MAPPING: TREE – HYPERRECTANGLE EQUIVALENCE

SYSTEM DESIGN : EFFICIENT HYPERRECTANGE ENCLOSURE QUERIES
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STABLE HASHING FOR EFFICIENT METADATA 

• BLOCKSET introduces the concept of selective access to load necessary parts of the 
model on demand during inference for models that don’t fit in memory.

• We block align the serialization format in order to minimize the number of I/Os.
• BLOCKSET supports three use cases – inference on embedded devices, inference on 

microservices such as lambda and inference when the model is stored on SSDs.

- T-REX trades random I/O for 
sequential I/O by remapping a 
random forest of trees into a 
single spatial index

- We make queries I/O efficient 
through pruning and space-
filling curves.

-  We optimize computation 
through quantization of 
hyperrectangle boundaries 
and vectorization of enclosure 
queries

The leaves of an axis-aligned decision tree partition the feature space into hyperrectangles. Tree 
leaves can be represented the upper and lower coordinates of the hyperrectangle in each dimension, 
which correspond to the minimum and maximum feature split values respectively on the path from the 
root node to. Each test point is contained in exactly one hyperrectangle per tree. 

Point enclosure queries are trivially 
parallelizable across the dimensions of the 
data and amenable to SIMD parallelism. : 
Quantized elements from groups of 16 
dimensions are packed into 128-bit vectors. 

- DNN training is expensive. 
- To avoid training from scratch models can transfer 

weights from existing pre-trained models (such as LLMs). 
This requires fine grained access to tensors.

- We design a model repository that can access tensors at 
a fine granularity. It is scalable under concurrency. 

CONTRIBUTIONS
- We introduce a scalable model repository that stores 

tensors as key value pairs. 
- It supports  multiple servers and clients exchanging data 

via RDMA
- We pre-pin RDMA buffers to avoid the overhead of dynamic 

allocations and pinning.
- We introduced a stable hashing technique inspired my 

Merkle trees to provide a consistent naming scheme for 
model layers.

Key Idea: Hash the 
structurally significant 
attributes of the layer 
together with hashes 
describing the 
ancestry of its input 
dependencies
• enables unique 

IDs regardless of 
how many 
repetitions of 
layers or entire 
substructures 
exist in the 
architectures

T-Rex reduces latency by up to 4 times when 
compared the cache-optimized trees of forest 
packing and up to 25 times when comparison 
with systems that compile trees
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