

# **CONTRIBUTION 1: Inference Latency Reduction in Tree Ensemble Models**

### MOTIVATION

Tree ensembles, random forests and gradient boosted trees, are useful in resource-limited machine learning deployment. Traversing tree data structures is not cache friendly, which results in high latency during inference. Moreover, existing tree ensemble frameworks are designed for batch throughput and require the model to fit in RAM.. We introduce two systems BLOCKSET and T-REX to alleviate these issues. BLOCKSET serializes gradient-boosted trees and random forests to optimize inference latency when models are not loaded into memory. We pack tree nodes and paths together using node access probabilities in a block-aligned fashion to reduce I/Os. T-REX performs efficient inference more generally - even when the models are stored in memory by mapping tree traversals to hyperrectangle enclosures due to the observation that decision trees partition d-dimensional spaces to convex polytopes.

## **Project 1: BLOCKSET (Block Aligned Serialized**

### **OVERVIEW**

SYSTEM DESIGN

- BLOCKSET introduces the concept of selective access to load necessar model **on demand** during inference for models that don't fit in memory.
- We **block align** the serialization format in order to minimize the number BLOCKSET supports three use cases – inference on embedded devices,
- microservices such as lambda and inference when the model is stored



Block-aligned layout of the interior nodes of a classification forest with a l 4 nodes. The top nodes (1A-4C) are interleaved. The highest cardinality p

grouped into blocks. Colors indicate block boundaries for residuals.

### RESULTS



- This graph shows average inference I compared to existing layouts.
- BLOCKSET reduces inference latency **5x times** over existing methods and reduction.
- It reduces memory requirements by <sup>2</sup> because the model is stored on the d

# FOR MORE INFORMATION VISIT

# I/O Efficient Machine Learning

faculty/staff/researcher names

Johns Hopkins University | Whiting School of Engineering | Baltimore, MD

| <b>y</b> 11 <b>y</b>                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trees)                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ry parts of the<br>of I/Os.<br>inference on<br>on SSDs.                                                                         | <ul> <li>OVERVIEW</li> <li>T-REX trades random I/O for sequential I/O by remapping a random forest of trees into a single spatial index</li> <li>We make queries I/O efficient through pruning and spacefilling curves.</li> <li>We optimize computation through quantization of hyperrectangle boundaries and vectorization of enclosure queries</li> </ul>                                                                                                                                                                                                                                                                   | PROBLEM MAI<br>The leaves of an at<br>leaves can be repriving<br>which correspond<br>root node to. Each<br>$f_2 < 100$<br>$f_2 < 100$<br>$f_3 < 100$<br>$f_2 < 100$<br>$f_3 < 100$ |
|                                                                                                                                 | SYSTEM DESIGN : EFFICIEN         22       23       26       27       38       39       42       43         21       24       25       28       37       40       41       44         20       19       30       29       36       35       46       45         17       18       31       32       33       34       47       48         16       13       12       11       54       53       52       49         15       14       9       10       55       56       50       50         2       3       8       7       58       57       65       65         1       4       5       6       59       60       6       64 | <ul> <li>0.0 2.5 5.0 7.5 10. 0.0</li> <li>T HYPERRECTAN</li> <li>I. Distance Filter: Index         <ol> <li>1. Order hyperrectang leaf centroids.</li> <li>2. Combine the Hilbert curve so that each reg</li> <li>The distinct colors rep</li> <li>3. Build an index (belowed the Hilbert curve blocks.</li> </ol> </li> <li>II. Distance Filter: Quer         <ol> <li>1. Find the Hilbert num observation and all ad 2. Retrieve the block a index</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <sup>2G</sup> <sup>2E</sup> <sup>2H</sup> <sup>4F</sup> <sup>4I</sup> <sup>1H</sup> <sup>1I</sup><br>block size of<br>baths are | Hilbert IndicesBlock Addresses1-9010-16117-34235-543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3. Retrieve the hyperre<br>1 2<br>The Hilbert ids correspond<br>immediate neighbors are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| latency<br>y by <b>2-</b><br>a 100x<br>100x<br>lisk                                                                             | Point enclosure queries are trivially<br>parallelizable across the dimensio<br>data and amenable to SIMD paralle<br>Quantized elements from groups o<br>dimensions are packed into 128-bi                                                                                                                                                                                                                                                                                                                                                                                                                                      | U1<br>Ans of the<br>elism. :<br>of 16<br>t vectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TODO:                                                                                                                           | QR CODE WITH link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

test point is contained in exactly one hyperrectangle per tree.



ert cubes into regions along the space-filling gion contains a block's worth of centroids. present regions (left) and blocks (below) ow left) that maps regions of the

mbers of the cube that contains the test djacent cubes (dashed box).



(34,47,48,49,50,51,52,53,56)





