
I/O Efficient Machine Learning
faculty/staff/researcher names

Johns Hopkins University | Whiting School of Engineering | Baltimore, MD

Tree ensembles, random forests and gradient boosted trees, are useful in resource-limited machine learning deployment. Traversing tree data structures is not cache friendly, which results in high latency during inference Moreover,
existing tree ensemble frameworks are designed for batch throughput and require the model to fit in RAM.. We introduce two systems BLOCKSET and T-REX to alleviate these issues. BLOCKSET serializes gradient-boosted trees and
random forests to optimize inference latency when models are not loaded into memory . We pack tree nodes and paths together using node access probabilities in a block-aligned fashion to reduce I/Os. T-REX performs efficient
inference more generally – even when the models are stored in memory by mapping tree traversals to hyperrectangle enclosures due to the observation that decision trees partition d-dimensional spaces to convex polytopes.

BLOCKSET reads a trained tree
ensemble, applies node
packing optimizations and
finally performs inference on
the packed model

Block-aligned layout of the interior nodes of a classification forest with a block size of
4 nodes. The top nodes (1A-4C) are interleaved . The highest cardinality paths are
grouped into blocks. Colors indicate block boundaries for residuals.

CONTRIBUTION 2: A Scalable Model
Repository For Transfer Learning
With Efficient Tensor Access

Project 1: BLOCKSET (Block Aligned Serialized Trees)

CONTRIBUTION 1: Inference Latency Reduction in Tree Ensemble Models

Project 2: T-REX (Tree Rectangles)

• This graph shows average inference latency
compared to existing layouts.

• BLOCKSET reduces inference latency by 2-
5x times over existing methods and a 100x
reduction.

• It reduces memory requirements by 100x
because the model is stored on the disk

(5,

(5,100)

I. Distance Filter: Index Construction
1. Order hyperrectangles by the Hilbert number of the projected
leaf centroids.
2. Combine the Hilbert cubes into regions along the space-filling
curve so that each region contains a block’s worth of centroids.
The distinct colors represent regions (left) and blocks (below).
3. Build an index (below left) that maps regions of the
Hilbert curve blocks.

II. Distance Filter: Querying
1. Find the Hilbert numbers of the cube that contains the test
observation and all adjacent cubes (dashed box).
2. Retrieve the block addresses of the Hilbert numbers from the
index.
3. Retrieve the hyperrectangle boundaries from the blocks (below).

1 2 3 4 5

1 2 3 4 5

Test Data
Hilbert Indices Block Addresses
1-9 0
10-16 1

17-34 2
35-54 3

55-64 4

The Hilbert ids corresponding to the test observation and its
immediate neighbors are (34,47,48,49,50,51,52,53,56)

a a a a

a a a a

a a a a

a a a a

U1 U2 U3 U16

L1 L2 L3 L16

Test] [
…

…

a a

a

a

a

a

a

a

Test

Upper Bound

Lower Bound

>

<=

]
]

[
[

128-bit Vectors

Note:
• TRD: Test Rounded Down
• TRU: Test Rounded Up

Code to Vectorize Point Enclosure

__m128i range_compare(__m128i U, __m128i
TRD, __m128i TRU, __m128i L)
{

return (__mm_cmpgt_epi(U, TRD) |
__mm_cmpeq_epi(U, TRD)) &
(__mm_cmpgt_epi(TRU, L) |
__mm_cmpeq_epi(TRU, L)) ;

}

MOTIVATION

SYSTEM DESIGN

RESULTS

RESULTS

PROBLEM MAPPING: TREE – HYPERRECTANGLE EQUIVALENCE

SYSTEM DESIGN : EFFICIENT HYPERRECTANGE ENCLOSURE QUERIES

OVERVIEW

MOTIVATION

OVERVIEW

STABLE HASHING FOR EFFICIENT METADATA

• BLOCKSET introduces the concept of selective access to load necessary parts of the
model on demand during inference for models that don’t fit in memory.

• We block align the serialization format in order to minimize the number of I/Os.
• BLOCKSET supports three use cases – inference on embedded devices, inference on

microservices such as lambda and inference when the model is stored on SSDs.

- T-REX trades random I/O for
sequential I/O by remapping a
random forest of trees into a
single spatial index

- We make queries I/O efficient
through pruning and space-
filling curves.

- We optimize computation
through quantization of
hyperrectangle boundaries
and vectorization of enclosure
queries

The leaves of an axis-aligned decision tree partition the feature space into hyperrectangles. Tree
leaves can be represented the upper and lower coordinates of the hyperrectangle in each dimension,
which correspond to the minimum and maximum feature split values respectively on the path from the
root node to. Each test point is contained in exactly one hyperrectangle per tree.

Point enclosure queries are trivially
parallelizable across the dimensions of the
data and amenable to SIMD parallelism. :
Quantized elements from groups of 16
dimensions are packed into 128-bit vectors.

- DNN training is expensive.
- To avoid training from scratch models can transfer

weights from existing pre-trained models (such as LLMs).
This requires fine grained access to tensors.

- We design a model repository that can access tensors at
a fine granularity. It is scalable under concurrency.

CONTRIBUTIONS
- We introduce a scalable model repository that stores

tensors as key value pairs.
- It supports multiple servers and clients exchanging data

via RDMA
- We pre-pin RDMA buffers to avoid the overhead of dynamic

allocations and pinning.
- We introduced a stable hashing technique inspired my

Merkle trees to provide a consistent naming scheme for
model layers.

Key Idea: Hash the
structurally significant
attributes of the layer
together with hashes
describing the
ancestry of its input
dependencies
• enables unique

IDs regardless of
how many
repetitions of
layers or entire
substructures
exist in the
architectures

T-Rex reduces latency by up to 4 times when
compared the cache-optimized trees of forest
packing and up to 25 times when comparison
with systems that compile trees

FOR MORE
INFORMATION VISIT

TODO: QR CODE WITH link

