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CONTRIBUTION 1: Inference Latency Reduction in Tree Ensemble Models CONTRIBUTION 2: A Scalable Model
Repository For Transfer Learning
MOTIVATION With Efficient Tensor Access

Tree ensembles, random forests and gradient boosted trees, are useful in resource-limited machine learning deployment. Traversing tree data structures is not cache friendly, which results in high latency during inference Moreover,
existing tree ensemble frameworks are designed for batch throughput and require the model to fit in RAM.. We introduce two systems BLOCKSET and T-REX to alleviate these issues. BLOCKSET serializes gradient-boosted trees and MOTIVATION
random forests to optimize inference latency when models are not loaded into memory . We pack tree nodes and paths together using node access probabilities in a block-aligned fashion to reduce |I/0s. T-REX performs efficient
inference more generally — even when the models are stored in memory by mapping tree traversals to hyperrectangle enclosures due to the observation that decision trees partition d-dimensional spaces to convex polytopes.

- DNN training is expensive.

- To avoid training from scratch models can transfer
weights from existing pre-trained models (such as LLMs).
This requires fine grained access to tensors.

- We design a model repository that can access tensors at

Project 1: BLOCKSET (Block Aligned Serialized Trees) Project 2: T-REX (Tree Rectangles)
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