
Job Level Communication-Avoiding Detection and Correction of
Silent Data Corruption in HPC Applications

Laslo Hunhold

hunhold@uni-koeln.de

University of Cologne

Parallel and Distributed Systems Group

Cologne, Germany

Stefan Wesner
∗

wesner@uni-koeln.de

University of Cologne

Parallel and Distributed Systems Group

Cologne, Germany

ABSTRACT
Detecting and correcting Silent Data Corruption (SDC) is of high in-

terest for many HPC applications due to the dramatic consequences

such undetected computation errors can have. Additionally, going

into the exascale era of computing, SDC error rates are only in-

creasing with growing system sizes. State of the art methods based

on instruction duplication suffer from only partial error coverage,

significant synchronization overhead and strong coupling of com-

putation and validation.

This work proposes a novel communication-avoiding approach

of detecting and mitigating SDCs at the job level within the work-

load manager, assuming a directed acyclic graph (DAG) job model.

Each job only communicates a locally generated output data hash.

Computation and validation are decoupled as separately schedulable

jobs and dependency stalling is avoided with a special error recov-

ery method. The implementation of this project as a SLURM plugin

is in progress and key design aspects are outlined.

CCS CONCEPTS
• Computer systems organization→ Redundancy; • Software
and its engineering → Ultra-large-scale systems; Error hand-
ling and recovery; • Computing methodologies → Parallel
computing methodologies.

1 INTRODUCTION
Silent data corruption (SDC) is a computing error that is undetected

during execution. The causes of SDCs are manifold and can range

from undetected hardware defects to single-event upsets (SEUs),

where an ionizing particle affects a transistor. SDCs can have dra-

matic consequences for many HPC applications and there is a big

interest in detecting and correcting them, especially with rising

SDC error rates due to ever-increasing system sizes.

In this work we will only focus on SDC detection and correc-

tion methods which are based on duplicate execution of a given

program/instruction. The alternatives are usually domain-specific,

as they depend on a-priori knowledge of solution properties[1].

∗
Adviser

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC ’23, November 12–17, Denver, CO, USA
© 2023 Association for Computing Machinery.

Error prediction[2][5] and selective duplication[4] will also be out

of scope given they only provide partial error coverage. The most

common approach is to observe MPI communication between pro-

cesses and compare it between two identical runs[3]. This implies

a significant synchronization overhead due to stalling, which can

be mitigated by centrally storing the MPI messages and postpon-

ing validation at the cost of communication overhead[7]. Another

approach is to abstract task duplication via MPI ranks[6], which

however only provides partial error coverage.

Common to all approaches from the perspective of the workload

manager is that they are job-local. Particularly, computation and

validation are strongly coupled at the job level. This implies that

one has to reserve twice the resources for a job in the workload

manager and subsequent jobs that depend on the job have to wait

for both computation and validation to finish.

2 GOALS
This work aims for a method to detect and correct SDCs at the job

level within the workload manager with full error coverage, de-

coupling computation and validation. The proposed method should

be easy to implement for end users.

3 METHODOLOGY
We assume a directed acyclic graph (DAG) job model and each job 𝑗

to be reschedulable and idempotent. The latter assumption is not as

restrictive as it sounds, as you can even include Monte-Carlo-type

simulations with identically seeded PRNGs. Under these assump-

tions for 𝑗 , job validation can be achieved by comparing hashes of

the output data (majority vote), which minimizes communication

overhead.

The jobs are validated as follows: For each job 𝑗 , a separate

identical validation job 𝑗 ′ no other job depends on is scheduled

on nodes not used by 𝑗 . No dependency of 𝑗 waits for 𝑗 ′ to finish.

When both 𝑗 and 𝑗 ′ have finished, the output data hashes of 𝑗 and
𝑗 ′ are compared. If they match, the job 𝑗 is validated, otherwise new

identical validation jobs are launched until two hashes agree. If 𝑗 ’s

output data hash is one of the two matching hashes, it is marked as

valid. Otherwise the jobs in the subtree of 𝑗 are rescheduled (see

Figure 1).

4 IMPLEMENTATION
The proposed scheme is implemented as a SLURM workload man-

ager plugin. SLURM is chosen for the implementation given it is the

most popular workload manager in the TOP500. The validation jobs

are given a lower Priority (tunable based on the system SDC error

rate and job runtime for minimal rescheduling losses) to encourage

https://orcid.org/0000-0001-8059-0298
https://orcid.org/0000-0002-7270-7959


SC ’23, November 12–17, Denver, CO, USA Laslo Hunhold and Stefan Wesner

𝑗0 𝑗1

𝑗2

𝑗3

𝑗4

𝑗5

𝑗6

𝑗7

𝑗8

(a) initial state

𝑗0 𝑗1

𝑗2

𝑗3

𝑗4

𝑗5

𝑗6

𝑗7

𝑗8

(b) validation of job 𝑗4

𝑗0 𝑗1

𝑗2

𝑗3

𝑗4

𝑗5

𝑗6

𝑗7

𝑗8

(c) error detection in job 𝑗1

𝑗0 𝑗1

𝑗2

𝑗3

𝑗4

𝑗5

𝑗6

𝑗7

𝑗8

(d) rescheduling of 𝑗1-subtree

Figure 1: The process of error detection and rescheduling
shown for a simple job DAG. Unfilled grey nodes represent
pending jobs, unfilled black nodes represent running jobs,
filled grey nodes represent finished jobs that are waiting
for validation, filled black nodes represent validated jobs
and filled red nodes represent invalidated jobs. Following the
initial state (a), (b) shows a possible scenario where validation
may happen independently from the implicit DAG hierarchy.
If a job run is found to be invalid by majority vote, as shown
in (c) for job 𝑗1, it is replaced with its valid run and all jobs
depending on 𝑗1 are rescheduled to depend on the valid run.

the computation job to finish first, given subsequent jobs depend on

the latter. Node overlap is avoided by setting ExcNodeList for the

validation jobs. Validation jobs are launched by the SLURM control-

ler daemon in a new WorkDir respectively. Output hash calculation

is the responsibility of the job itself, minimizing communication.

The most complex aspect is rescheduling jobs following an in-

validation of a job 𝑗 : After inspecting the job queue (for running

and pending jobs) and job accounting (for completed jobs), all jobs

within the subtree of 𝑗 are rescheduled with an updated dependency

list reflecting new job IDs. Completed jobs are invalidated by chan-

ging the DerivedExitCode with sjobexitmod(1) and setting the

appropriate SystemComment. Likewise, validated jobs are marked

accordingly in the job accounting system.

5 CONCLUSION
To the best of the author’s knowledge the proposed approaches

to consider SDC detection and correction both at the job level

and within a DAG job model are completely novel. The minimal

amount of communication to transmit the locally generated output

data hashes promises good scalability irrespective of the system’s

heterogenicity and the minimal necessary modifications of the

SLURM batch scripts ensure good usability.

Decoupling computation and validation as separate jobs not only

for each job but in terms of the entire DAG hierarchy allows more

efficient scheduling and more freedom compared to a linear task

model as seen with previous approaches. This is also underlined

by the fact that there is no stalling overhead by jobs waiting for

their dependencies to finish validating. Despite the possible res-

cheduling overhead in the rare failure case, validating job runs can

be adaptively prioritized depending on the system’s SDC error rate

and rescheduling cost. This is especially relevant for complex job

relationships in exascale systems.

REFERENCES
[1] Tommaso Benacchio et al. 2021. Resilience and fault tolerance in high-performance

computing for numerical weather and climate prediction. The International
Journal of High Performance Computing Applications, 35, 4, (Feb. 2021), 285–311.
doi: 10.1177/1094342021990433.

[2] Sheng Di, Eduardo Berrocal and Franck Cappello. 2015. An Efficient Silent Data

Corruption Detection Method with Error-Feedback Control and Even Sampling

for HPCApplications. In 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (2015 IEEE/ACM 15th International Symposium on

Cluster, Cloud, and Grid Computing (CCGrid 2015)). IEEE, Shenzhen, China,

(July 2015), 271–280. doi: 10.1109/CCGrid.2015.17.

[3] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira and

Ron Brightwell. 2013. Detection and Correction of Silent Data Corruption for

Large-Scale High-Performance Computing. In SC ’12 (Salt Lake City, UT, USA).
IEEE, (Feb. 2013), 1–12. doi: 10.1109/SC.2012.49.

[4] Yafan Huang, Shengjian Guo, Sheng Di, Guanpeng Li and Franck Cappello.

2023. Mitigating Silent Data Corruptions in HPC Applications across Multiple

Program Inputs. In SC ’22 (Dallas, TX, USA). IEEE, (Feb. 2023), 1–14. doi: 10.110
9/SC41404.2022.00022.

[5] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen and Franck Cappello.

2020. Towards End-to-end SDC Detection for HPC Applications Equipped with

Lossy Compression. In 2020 IEEE International Conference on Cluster Comput-
ing (CLUSTER). 2020 IEEE International Conference on Cluster Computing

(CLUSTER) (Kobe, Japan). IEEE, (Sept. 2020), 326–336. doi: 10.1109/CLUSTER49

012.2020.00043.

[6] P. Samfass, T. Weinzierl, A. Reinarz and M. Bader. 2021. Doubt and Redundancy

Kill Soft Errors—Towards Detection and Correction of Silent Data Corruption

in Task-based Numerical Software. In 2021 IEEE/ACM 11th Workshop on Fault
Tolerance for HPC at eXtreme Scale (FTXS). IEEE Computer Society, Los Alamitos,

CA, USA, (Nov. 2021), 1–10. doi: 10.1109/FTXS54580.2021.00005.

[7] Guozhen Zhang, Yi Liu, Hailong Yang andDepei Qian. 2021. Efficient detection of

silent data corruption in HPC applications with synchronization-free message

verification. The Journal of Supercomputing, 78, (June 2021), 1381–1408. doi:

10.1007/s11227-021-03892-4.

https://doi.org/10.1177/1094342021990433
https://doi.org/10.1109/CCGrid.2015.17
https://doi.org/10.1109/SC.2012.49
https://doi.org/10.1109/SC41404.2022.00022
https://doi.org/10.1109/SC41404.2022.00022
https://doi.org/10.1109/CLUSTER49012.2020.00043
https://doi.org/10.1109/CLUSTER49012.2020.00043
https://doi.org/10.1109/FTXS54580.2021.00005
https://doi.org/10.1007/s11227-021-03892-4

	Abstract
	1 Introduction
	2 Goals
	3 Methodology
	4 Implementation
	5 Conclusion

