
Fast checkpointing of Large Language Models with TensorStore CHFS
Sohei Koyama Kohei Hiraga (advisor) Osamu Tatebe (advisor)

University of Tsukuba

Introduction

Large language models have attracted the attention of industry and research community
because of their utility [9]. Training large language models requires enormous computa-
tional resources, and state preservation during model training, which is alson known as
checkpointing, is time- and resource-intensive. Although creating checkpoints at a high
frequency is desirable, the frequency of checkpoints is limited by the write bandwidth to
the parallel file system [2]. In this study, we propose the TensorStore consistent hashing
file system (CHFS) to accelerate checkpoint creation in training large language mod-
els. CHFS [8], an ad hoc parallel file system, is constructed by bundling the persistent
memory of compute nodes. Furthermore, checkpoints are created on the CHFS to accel-
erate checkpoint creation. In this study, the CHFS was integrated into TensorStore [3]
so that it could be used seamlessly from T5X [6], Orbax [5], and JAX [1]. The time
required for checkpoints creation in training a large language model was also measured
to demonstrate the effectiveness of using the CHFS. The evaluation results revealed that
the bandwidth of checkpoint creation can be improved by up to ~4.5 times using the
CHFS.

Related Research

Check-N-Run [2] is a scalable checkpoint system used to train large-scale recommenda-
tion models. It uses incremental checkpointing and quantization techniques to reduce
data size without compromising accuracy. Our study did not reduce the data size, but
improved the storage performance, accelerating checkpoint creation.

Background

TensorStore

TensorStore [3] is a library designed for efficient reading and writing of large-scale multi-
dimensional arrays. One use case for TensorStore is checkpointing of the language model.
TensorStore has already been used for checkpoint management in JAX [4]. The C++
implementation of the same achieves high performance by automatically using multiple
cores for task encoding/decoding and performing I/O operations in parallel to maximize
throughput. TensorStore provides a Python API that uses the same indexing and op-
eration syntax as standard NumPy operations. The Listing 1 illustrates the method of
using TensorStore.
import tensorstore as ts
dataset = ts.open({

’kvstore’: { ’driver’: ’file’, ’path’: ’/path/to/dataset/’, },
’driver’: ’n5’, ’metadata’: { ... }, ’create’: True, ’delete_existing’: True, }).result()

dataset[80:82, 99:102].write([[1, 2, 3], [4, 5, 6]]).result()

Listing 1: The method of using TensorStore

CHFS

CHFS [8] is an ad hoc parallel file system that uses Intel Optane Persistent Memory in-
stalled on compute nodes. Because CHFS distributes metadata, it has high scalability for
metadata access performance. CHFS provides a CHFS Client written in the C language,
which offers improved performance than that of the access via FUSE. CHFS constructs
a parallel file system by executing a daemon process, chfsd, on each compute node.

Design and Implementation of TensorStore CHFS

Figure 1 depicts the checkpoint creation while training large language models using T5X.
In HPC clusters, checkpoints were created on the parallel file system Lustre. TensorStore
uses the “file” key-value store driver to create checkpoints on Lustre. The compute nodes
and Lustre were connected using high-speed interconnects. However, the frequency of
checkpoint creation is limited by the lack of write bandwidth of Lustre.
Figure 2 depicts the checkpoint creation process when TensorStore CHFS is used. Ten-
sorStore connects to the chfsd daemon via the CHFS client and sends the checkpoint
data to chfsd. Then, chfsd writes the checkpoint data to the Intel Optane Persistent
Memory installed on the compute node.
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Figure 1. Checkpoint process using Lustre filesystem.
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Figure 2. Checkpoint process using TensorStore CHFS.

TensorStore natively supports multiple storage drivers, including Google Cloud Storage,
local and network file systems, and in-memory storage systems. In this study, the CHFS
was added to TensorStore as a key-value storage driver. The Listing 2 outlines the
method to use TensorStore CHFS.
dataset = ts.open({

’driver’: ’zarr’, ’kvstore’: { ’driver’: ’chfs’, ’path’: ’/path/to/dataset/’, },
}, dtype=ts.uint32, shape=[1000, 20000], create=True).result()

Listing 2: The method to use TensorStore CHFS

TensorStore CHFS is based on the “file” key-value storage driver and uses the CHFS
API instead of the Posix API. It majorly differs from the “file” key-value storage in that
the “file” key-value storage has ACID guarantees; however, the TensorStore CHFS does
not have ACID guarantees because it focuses on performance. ACID guarantees are not
required for checkpoints creation.

Evaluation

The bandwidth of checkpoint creation was measured with and without TensorStore
CHFS using T5X. To measure the bandwidth, the parameter size of the T5 1.1
model was changed, and the model was divided into 8, 16, and 32 nodes. The
corresponding checkpoint sizes were 115, 179, and 257GiB. The evaluation was per-
formed using the Big Memory Supercomputer, Pegasus, at the University of Tsukuba.

8 node (115 GiB) 16 node (179 GiB) 32 node (257 GiB)
# of Nodes (checkpoint size [GiB])

0

10

20

30

40

50

60

70

80

Ba
nd

wi
dt

h 
[G

iB
/s

]

Checkpoint write bandwidth
Lustre
CHFS

Figure 3. Checkpoint write bandwidth.

The Lustre file system was used for compar-
ison with the TensorStore CHFS. Lustre is
a 7.1 PB DDN EXAScaler with an effective
40GB/s. Each compute node of the Pegasus
is equipped with a 2TiB Intel Optane Persis-
tent Memory 300 series and an Nvidia H100
Tensor Core GPU. The limit of the Tensor-
Store parameter, file_io_concurrency, was
set to 128. The evaluation results are de-
picted in Figure 3. In the case of 32 nodes,
the bandwidth of checkpoint creation with
TensorStore CHFS was 78 GiB/s, which is
4.5 times that with Lustre.

Conclusion

The frequency of checkpoint creation in large language models is limited by the write
bandwidth to a parallel file system. In this study, we aim to reduce the checkpoint
creation time by writing to the Intel Optane Persistent Memory installed on the compute
nodes. We propose TensorStore CHFS, a storage driver that adds an ad hoc parallel
file system CHFS to the TensorStore. The proposed method succeeded in increasing the
checkpoint creation bandwidth of the T5 1.1 model by 4.5 times on 32 nodes.
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