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Fast checkpointing of Large Language Models with TensorStore CHFS

SOHEI KOYAMA, KOHEI HIRAGA (ADVISOR), and OSAMU TATEBE (ADVISOR), University of Tsukuba

The frequency of checkpoint creation in large language models is limited
by the write bandwidth to a parallel file system. In this study, we aim to re-
duce the checkpoint creation time by writing to the Intel Optane Persistent
Memory installed on the compute nodes. We propose TensorStore CHFS,
a storage driver that adds an ad hoc parallel file system CHFS to the Ten-
sorStore. The proposed method succeeded in increasing the checkpoint cre-
ation bandwidth of the T5 1.1 model by 4.5 times on 32 nodes.
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1 INTRODUCTION
Large language models have attracted the attention of industry and
research community because of their utility [7]. Training large lan-
guagemodels requires enormous computational resources, and state
preservation duringmodel training, which is alson known as check-
pointing, is time- and resource-intensive. Although creating check-
points at a high frequency is desirable, the frequency of check-
points is limited by the write bandwidth to the parallel file sys-
tem [2]. In this study, we propose the TensorStore consistent hash-
ing file system (CHFS) to accelerate checkpoint creation in training
large language models. CHFS [6], an ad hoc parallel file system, is
constructed by bundling the persistent memory of compute nodes.
Furthermore, checkpoints are created on the CHFS to accelerate
checkpoint creation. In this study, the CHFS was integrated into
TensorStore [3] so that it could be used seamlessly from T5X [5],
Orbax [4], and JAX [1]. The evaluation results revealed that the
bandwidth of checkpoint creation can be improved by up to ~4.5
times using the CHFS.

2 RELATED RESEARCH
Check-N-Run [2] is a scalable checkpoint systemused to train large-
scale recommendation models. It uses incremental checkpointing
and quantization techniques to reduce data size without compro-
mising accuracy. Our study did not reduce the data size, but im-
proved the storage performance, accelerating checkpoint creation.

3 BACKGROUND

3.1 TensorStore
TensorStore [3] is a library designed for efficient reading and writ-
ing of large-scale multidimensional arrays. The Listing 1 illustrates
the method of using TensorStore.

import tensorstore as ts

dataset = ts.open({
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Fig. 1. Checkpoint process using Lustre filesystem.

'kvstore': { 'driver': 'file', 'path':

'/path/to/dataset/', },

'driver': 'n5', 'metadata': { ... }, 'create':

True, 'delete_existing': True, }).result()

dataset[80:82, 99:102].write([[1, 2, 3], [4, 5,

6]]).result()

Listing 1. The method of using TensorStore

3.2 CHFS
CHFS [6] is an ad hoc parallel file system that uses Optane Persis-
tent Memory installed on compute nodes. CHFS constructs a paral-
lel file system by executing a daemon process, chfsd, on each com-
pute node.

4 DESIGN AND IMPLEMENTATION OF TENSORSTORE
CHFS

Figure 1 depicts the checkpoint creation while training large lan-
guage models using T5X. In HPC clusters, checkpoints were cre-
ated on the parallel file system Lustre. TensorStore uses the “file”
key-value store driver to create checkpoints on Lustre. The com-
pute nodes and Lustre were connected using high-speed intercon-
nects. However, the frequency of checkpoint creation is limited by
the lack of write bandwidth of Lustre.

Figure 2 depicts the checkpoint creation process when Tensor-
Store CHFS is used. TensorStore connects to the chfsd daemon via
the CHFS client and sends the checkpoint data to chfsd. Then, chfsd
writes the checkpoint data to the Intel Optane Persistent Memory
installed on the compute node.

TensorStore natively supports multiple storage drivers, includ-
ing Google Cloud Storage, local and network file systems, and in-
memory storage systems. In this study, the CHFS was added to Ten-
sorStore as a key-value storage driver. The Listing 2 outlines the
method to use TensorStore CHFS.

dataset = ts.open({
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Fig. 2. Checkpoint process using TensorStore CHFS.

'driver': 'zarr', 'kvstore': { 'driver': 'chfs',

'path': '/path/to/dataset/', },

}, dtype=ts.uint32, shape=[1000, 20000],

create=True).result()

Listing 2. The method to use TensorStore CHFS

TensorStore CHFS is based on the “file” key-value storage driver
and uses the CHFS API instead of the Posix API. It majorly differs
from the “file” key-value storage in that the “file” key-value stor-
age has ACID guarantees; however, the TensorStore CHFS does not
have ACID guarantees because it focuses on performance. ACID
guarantees are not required for checkpoints creation.

5 EVALUATION
The bandwidth of checkpoint creationwasmeasuredwith andwith-
out TensorStore CHFS using T5X. To measure the bandwidth, the
parameter size of the T5 1.1 model was changed, and the model
was divided into 8, 16, and 32 nodes. The corresponding checkpoint
sizes were 115, 179, and 257GiB. The evaluation was performed us-
ing the Big Memory Supercomputer, Pegasus, at the University of
Tsukuba. The Lustre file system was used for comparison with the
TensorStore CHFS. Lustre is a 7.1 PB DDN EXAScaler with an ef-
fective 40GB/s. Each compute node of the Pegasus is equipped with
a 2TiB Intel Optane Persistent Memory 300 series and an Nvidia
H100 Tensor Core GPU. The limit of the TensorStore parameter,
file_io_concurrency, was set to 128.
The evaluation results are depicted in Figure 3. In the case of

32 nodes, the bandwidth of checkpoint creation with TensorStore
CHFS was 78 GiB/s, which is 4.5 times that with Lustre.

6 CONCLUSION
In this study, we demonstrated that the checkpoint creation of large
languagemodels accelerated by adding the CHFS as a storage driver
for TensorStore. Using our method, the bandwidth of checkpoint
creation improved by 4.5 times during evaluation on 32 nodes.
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