
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fast checkpointing of Large Language Models with TensorStore CHFS

SOHEI KOYAMA, KOHEI HIRAGA (ADVISOR), and OSAMU TATEBE (ADVISOR), University of Tsukuba

The frequency of checkpoint creation in large language models is limited
by the write bandwidth to a parallel file system. In this study, we aim to re-
duce the checkpoint creation time by writing to the Intel Optane Persistent
Memory installed on the compute nodes. We propose TensorStore CHFS,
a storage driver that adds an ad hoc parallel file system CHFS to the Ten-
sorStore. The proposed method succeeded in increasing the checkpoint cre-
ation bandwidth of the T5 1.1 model by 4.5 times on 32 nodes.

CCS Concepts: • Computing methodologies � Distributed computing
methodologies;

Additional KeyWords and Phrases: large languagemodels, distributed train-
ing, checkpointing

ACM Reference format:
Sohei Koyama, Kohei Hiraga (advisor), and Osamu Tatebe (advisor). 2023.
Fast checkpointing of Large Language Models with TensorStore CHFS. 1,
1, Article 1 (August 2023), 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large language models have attracted the attention of industry and
research community because of their utility [7]. Training large lan-
guagemodels requires enormous computational resources, and state
preservation duringmodel training, which is alson known as check-
pointing, is time- and resource-intensive. Although creating check-
points at a high frequency is desirable, the frequency of check-
points is limited by the write bandwidth to the parallel file sys-
tem [2]. In this study, we propose the TensorStore consistent hash-
ing file system (CHFS) to accelerate checkpoint creation in training
large language models. CHFS [6], an ad hoc parallel file system, is
constructed by bundling the persistent memory of compute nodes.
Furthermore, checkpoints are created on the CHFS to accelerate
checkpoint creation. In this study, the CHFS was integrated into
TensorStore [3] so that it could be used seamlessly from T5X [5],
Orbax [4], and JAX [1]. The evaluation results revealed that the
bandwidth of checkpoint creation can be improved by up to ~4.5
times using the CHFS.

2 RELATED RESEARCH
Check-N-Run [2] is a scalable checkpoint systemused to train large-
scale recommendation models. It uses incremental checkpointing
and quantization techniques to reduce data size without compro-
mising accuracy. Our study did not reduce the data size, but im-
proved the storage performance, accelerating checkpoint creation.

3 BACKGROUND

3.1 TensorStore
TensorStore [3] is a library designed for efficient reading and writ-
ing of large-scale multidimensional arrays. The Listing 1 illustrates
the method of using TensorStore.

import tensorstore as ts

dataset = ts.open({

C
om

pute N
ode

Training process

T5X/Orbax/JAX

TensorStore

Training process

T5X/Orbax/JAX

TensorStore

Training process

T5X/Orbax/JAX

TensorStore

Lustre

High-Speed Interconnect

Fig. 1. Checkpoint process using Lustre filesystem.

'kvstore': { 'driver': 'file', 'path':

'/path/to/dataset/', },

'driver': 'n5', 'metadata': { ... }, 'create':

True, 'delete_existing': True, }).result()

dataset[80:82, 99:102].write([[1, 2, 3], [4, 5,

6]]).result()

Listing 1. The method of using TensorStore

3.2 CHFS
CHFS [6] is an ad hoc parallel file system that uses Optane Persis-
tent Memory installed on compute nodes. CHFS constructs a paral-
lel file system by executing a daemon process, chfsd, on each com-
pute node.

4 DESIGN AND IMPLEMENTATION OF TENSORSTORE
CHFS

Figure 1 depicts the checkpoint creation while training large lan-
guage models using T5X. In HPC clusters, checkpoints were cre-
ated on the parallel file system Lustre. TensorStore uses the “file”
key-value store driver to create checkpoints on Lustre. The com-
pute nodes and Lustre were connected using high-speed intercon-
nects. However, the frequency of checkpoint creation is limited by
the lack of write bandwidth of Lustre.

Figure 2 depicts the checkpoint creation process when Tensor-
Store CHFS is used. TensorStore connects to the chfsd daemon via
the CHFS client and sends the checkpoint data to chfsd. Then, chfsd
writes the checkpoint data to the Intel Optane Persistent Memory
installed on the compute node.

TensorStore natively supports multiple storage drivers, includ-
ing Google Cloud Storage, local and network file systems, and in-
memory storage systems. In this study, the CHFS was added to Ten-
sorStore as a key-value storage driver. The Listing 2 outlines the
method to use TensorStore CHFS.

dataset = ts.open({

, Vol. 1, No. 1, Article 1. Publication date: August 2023.



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

1:2 • Sohei Koyama, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Training process

T5X/Orbax/JAX

TensorStore

CHFS Client

Intel Optane
Persistent Memory

chfsd

Training process

T5X/Orbax/JAX

TensorStore

CHFS Client

Intel Optane
Persistent Memory

chfsd

C
om

pute N
ode

Training process

T5X/Orbax/JAX

TensorStore

CHFS Client

Intel Optane
Persistent Memory

chfsd

Fig. 2. Checkpoint process using TensorStore CHFS.

'driver': 'zarr', 'kvstore': { 'driver': 'chfs',

'path': '/path/to/dataset/', },

}, dtype=ts.uint32, shape=[1000, 20000],

create=True).result()

Listing 2. The method to use TensorStore CHFS

TensorStore CHFS is based on the “file” key-value storage driver
and uses the CHFS API instead of the Posix API. It majorly differs
from the “file” key-value storage in that the “file” key-value stor-
age has ACID guarantees; however, the TensorStore CHFS does not
have ACID guarantees because it focuses on performance. ACID
guarantees are not required for checkpoints creation.

5 EVALUATION
The bandwidth of checkpoint creationwasmeasuredwith andwith-
out TensorStore CHFS using T5X. To measure the bandwidth, the
parameter size of the T5 1.1 model was changed, and the model
was divided into 8, 16, and 32 nodes. The corresponding checkpoint
sizes were 115, 179, and 257GiB. The evaluation was performed us-
ing the Big Memory Supercomputer, Pegasus, at the University of
Tsukuba. The Lustre file system was used for comparison with the
TensorStore CHFS. Lustre is a 7.1 PB DDN EXAScaler with an ef-
fective 40GB/s. Each compute node of the Pegasus is equipped with
a 2TiB Intel Optane Persistent Memory 300 series and an Nvidia
H100 Tensor Core GPU. The limit of the TensorStore parameter,
file_io_concurrency, was set to 128.
The evaluation results are depicted in Figure 3. In the case of

32 nodes, the bandwidth of checkpoint creation with TensorStore
CHFS was 78 GiB/s, which is 4.5 times that with Lustre.

6 CONCLUSION
In this study, we demonstrated that the checkpoint creation of large
languagemodels accelerated by adding the CHFS as a storage driver
for TensorStore. Using our method, the bandwidth of checkpoint
creation improved by 4.5 times during evaluation on 32 nodes.

REFERENCES
[1] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin,

D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang,
Q. JAX: composable transformations of Python+NumPy programs, 2018.

8 node (115 GiB) 16 node (179 GiB) 32 node (257 GiB)
# of Nodes (checkpoint size [GiB])

0

10

20

30

40

50

60

70

80

Ba
nd

wi
dt

h 
[G

iB
/s

]

Checkpoint write bandwidth
Lustre
CHFS

Fig. 3. Checkpoint write bandwidth.

[2] Eisenman, A., Matam, K. K., Ingram, S., Mudigere, D., Krishnamoorthi, R.,
Nair, K., Smelyanskiy, M., and Annavaram, M. Check-N-Run: A checkpoint-
ing system for training deep learning recommendation models. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22) (2022),
pp. 929–943.

[3] Google. Tensorstore. https://google.github.io/tensorstore/, 2023. Accessed: July
31, 2023.

[4] Orbax. Orbax documentation. https://orbax.readthedocs.io/en/latest/, 2023. Ac-
cessed: July 31, 2023.

[5] Roberts, A., Chung, H. W., Levskaya, A., Mishra, G., Bradbury, J., Andor, D.,
Narang, S., Lester, B., Gaffney, C., Mohiuddin, A., et al. Scaling up models
and data with t5x and seqio. arXiv preprint arXiv:2203.17189 (2022).

[6] Tatebe, O., Obata, K., Hiraga, K., and Ohtsuji, H. Chfs: Parallel consistent
hashing file system for node-local persistent memory. In International Conference
on High Performance Computing in Asia-Pacific Region (2022), pp. 115–124.

[7] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B.,
Zhang, J., Dong, Z., et al. A survey of large language models. arXiv preprint
arXiv:2303.18223 (2023).

, Vol. 1, No. 1, Article 1. Publication date: August 2023.


