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Introduction
• With the advent of GPU-dense node architectures in exascale platforms, 

achieving vendor-agnostic performance has become critical
• Porting legacy codes to run on current systems can be non-intuitive given 

the large number of heterogenous programming models available
• Proxy applications and performance models can facilitate rapid prototyping 

on new systems and help gauge performance bounds of full applications

Methodology

• Ported a massively parallel fluid dynamics application, HARVEY [1], as well as 
a proxy app, from CUDA to SYCL/DPC++, HIP, Kokkos + backends using manual 
handtuning and automated assist tools
• Runs conducted on Summit (ORNL/NVIDIA V100), Polaris (ALCF/NVIDIA 

A100), Crusher (ORNL/AMD MI250X) and Sunspot (ALCF/Intel PVC)
• Compared performance (millions of fluid lattice updates per second) of 

HARVEY against LBM proxy app and GPU performance model

Applications Overview
• HARVEY is an LBM-based, computational fluid dynamics code 

capable of simulating blood flow in image-derived vasculature at 
cellular resolution, like the aorta shown in (a)

• We developed an open-source proxy app based on the LBM that 
can solve fluid flows in simple geometries as shown in (b)
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Lattice Boltzmann Method

• The lattice Boltzmann method is used to model fluid flow
• Nearest-neighbor communication pattern lends LBM to parallelization
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GPU Performance Model

• We extend a forecast model we previously developed for CPUs [2] to 
predict scaling performance on GPU nodes

• Time is estimated from memory bandwidth measured with BabelStream 
[4] and communication times collected from custom pingpong 
benchmark:
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Results: Hardware Comparison
• Compared native programming models on each system for HARVEY, 

LBM proxy app, and performance model through strong-weak scaling

Results: Backend Comparison

• Compared programming model backends against native language on 
Summit (a), Polaris (b), Crusher (c), and Sunspot (d)

Lessons Learned

• With backends for CUDA, SYCL, HIP, and OpenACC, the Kokkos version of 
the HARVEY application was most portable but required the most porting 
effort

• The HIP codes required the least porting effort but were the most limited 
in portability

• Out-of-the-box machine-generated SYCL and HIP ports were competitive 
as informed by performance predictions and proxy application

• Native programming models generally outperformed off-brand models
• Performance predictions and proxy applications proved invaluable tools 

for navigating porting process and facilitating manual tuning efforts
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