
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Case Study for Performance Portability of GPU Programming Frameworks for
Hemodynamic Simulations

ARISTOTLE MARTIN, Duke University, USA

AMANDA RANDLES (ADVISOR), Duke University, USA

Preparing for the deployment of large scientific and engineering codes on GPU-dense exascale systems is made challenging by the
unprecedented diversity of vendor hardware and programming model alternatives for offload acceleration. To leverage the exaFLOPS
of GPUs from Frontier (AMD) and Aurora (Intel), users of high performance computing (HPC) legacy codes originally written to target
NVIDIA GPUs will have to make decisions with implications regarding porting effort, performance, and code maintainability. To
facilitate HPC users navigating this space, we have established a pipeline that combines generalized GPU performance models with
proxy applications to evaluate the performance portability of a massively parallel computational fluid dynamics (CFD) code in CUDA,
SYCL, HIP, and Kokkos with backends on current NVIDIA-based machines as well as testbeds for Aurora (Intel) and Frontier (AMD).
We demonstrate the utility of predictive models and proxy applications in gauging performance bounds and guiding hand-tuning
efforts.

CCS Concepts: • Computing methodologies → Parallel programming languages; Massively parallel and high-performance

simulations; • Hardware→ Emerging architectures.

Additional Key Words and Phrases: Performance portability, Proxy applications, Computational fluid dynamics

1 INTRODUCTION

With the advent of diverse GPU-dense node architectures in exascale platforms, the issues surrounding performance
portability of HPC codes across vendor hardware have taken center stage. The transition from predominantly NVIDIA
GPU-based systems like Summit (ORNL) and Lassen (LLNL) to platforms consisting of nodes centered around Intel
(Aurora, ALCF) and AMD (Frontier, ORNL) GPUs means that HPC users have to translate kernels written in CUDA to
alternative offload acceleration languages supported on these devices. Vendors have developed software infrastructure
centered around different programming models tailored to their hardware, which includes automated porting assist tools,
such as AMD’s HIPIFY. Beyond the vendor supported languages, users will also be able to choose from heterogeneous
programming frameworks such as Kokkos [1], which includes an ever-growing list of supported backends that includes
CUDA, HIP, and SYCL, among others. Selecting a programming model for a given application and hardware specification
requires a detailed comparative analysis and will need to consider the relative porting efforts.

Here, we describe our experiences in porting a massively parallel fluid dynamics code, HARVEY [2], from its native
CUDA implementation to SYCL, HIP, and Kokkos with CUDA, SYCL, HIP, and OpenACC as backend programming
models. We establish a pipeline that uses predictive GPU performance models together with a proxy application to
facilitate the porting process and guide additional hand-tuning.

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-8704-764X
HTTPS://ORCID.ORG/0000-0001-6318-3885


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Martin, et al.

84x

1
6
x
+
3

1
6
x+
3

8
x

3

G

Fig. 1. Geometry setup of the test problem.

2 METHODS

2.1 Description of applications

The main application we use is HARVEY [2], an in-house, highly scalable CFD code based on the lattice Boltzmann
method (LBM) developed to simulate blood flow in image-derived vasculature. Alongside HARVEY, we conduct runs
using an open source proxy application based on LBM that solves simple tubular flows. To facilitate direct comparisons
between the two applications, a cylindrical vessel is used for flow simulations as depicted in Fig. 1.

2.2 Overview of computing systems and porting procedure

Simulations are conducted on Summit (ORNL/NVIDIA V100), Polaris (ALCF/NVIDIA A100), Crusher (ORNL/AMD
MI250X), and Sunspot (ALCF/Intel PVC), depicted in Fig. 2. We start with native CUDA versions of both HARVEY and
the proxy app, and apply the same porting methods to both applications. SYCL codes are generated through the use of
the DPC++ Compatibility Tool (DPCT). HIP ports are generated with HIPIFY. The Kokkos versions are fully manual
ports.

2.3 Performance evaluation

Performance is measured in millions of fluid lattice updates per second (MFLUPS), which is a representative performance
measure for LBM-based codes [2]. We strong scale piece-wise to maintain adequate GPU occupancy over a range of
logical GPUs (equivalent to one PVC tile or a single graphics compute die on MI250X) and then increase the problem
size proportionately to the increase in the total GPU count, or MPI task count. We scaled the number of GPUs in powers
of 2 and doubled the scaling factor 𝑥 of the geometry shown in Fig. 1 after increasing the number of GPUs by a factor
of 8. Specifically, we sweep over 𝑥 = 12, 24, 48, representing cubic increases in the number of fluid points.

Authors’ addresses: Aristotle Martin, aristotle.martin@duke.edu, Duke University, 534 Research Dr., Durham, North Carolina, USA, 27705; Amanda
Randles (ADVISOR), amanda.randles@duke.edu, Duke University, 534 Research Dr., Durham, North Carolina, USA, 27705.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

https://orcid.org/0000-0002-8704-764X
https://orcid.org/0000-0001-6318-3885
https://orcid.org/0000-0001-6318-3885


105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Case Study for Performance Portability of GPU Programming Frameworks for Hemodynamic Simulations 3

Fig. 2. Overview of the study, which evaluate the performance portability of different programming models and hardware configura-
tions between HARVEY and an LBM proxy app. This diagram illustrates the diverse range of hardware and programming platforms
investigated

.

2.4 Description of the GPU performance model

To help evaluate the ported codes, we extended a performance model previously developed by our group in [3]. The
model uses the fact that LBM is memory bandwidth bound and approximates the time required for a GPU to process

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Martin, et al.

20 22 24 26 28 210

V100 GPUs / A100 GPUs / MI250X GCDs / PVC Tiles

103

104

105

106

107

M
F
L
U

P
S

x = 12

x = 24

x = 48

Summit HARVEY

Summit Ideal Prediction

Summit LBM-Proxy-App

Polaris HARVEY

Polaris LBM-Proxy-App

Polaris Ideal Prediction

Crusher HARVEY

Crusher LBM-Proxy-App

Crusher Ideal Prediction

Sunspot HARVEY

Sunspot LBM-Proxy-App

Sunspot Ideal Prediction

Fig. 3. Hardware comparison of HARVEY and LBM Proxy-App piecewise scaling performance (with LBM Proxy-App simulationSize
value "X" labeled on the graph) to prediction using the native backend to each system on Summit (CUDA), Crusher (HIP), Polaris
(CUDA), and Sunspot (SYCL).

fluid points as a function of the bandwidth measured with the Babel-STREAM benchmark [4]. The model also considers
the latency of on-node and inter-node MPI message passing directly between GPUs, as well as host-device memory
transfers, using a custom GPU PingPong benchmark. The model was used to predict the upper bound of piece-wise
strong scaling performance in MFLUPS on each system of interest.

3 RESULTS

3.1 Comparison of native programming models on different hardware

We evaluated the relative performance of native programming models to each system for HARVEY and the LBM proxy
app, along with corresponding performance predictions, shown in Fig. 3. Overall, native CUDA on NVIDIA A100s
of Polaris outperformed the other native models, seen with both HARVEY and the proxy app. For the smallest GPU
counts, HIP performs the worst, but then becomes competitive for multi-node runs. The SYCL code exhibited the largest
performance gains during the weak scaling portions of the graph.

3.2 Comparison of programming model backends

Fig. 4 shows the relative performance of programming models versus the native model on each system used in this
study. Overall, the native programming models generally outperform the “off-brand" models.
Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Case Study for Performance Portability of GPU Programming Frameworks for Hemodynamic Simulations 5

20 22 24 26 28 210

V100 GPUs

103

104

105

106

107

M
F
L
U

P
S

(a)

x = 12

x = 24

x = 48

20 22 24 26 28 210

A100 GPUs

103

104

105

106

107

M
F
L
U

P
S

(b)

x = 12

x = 24

x = 48

20 22 24 26 28 210

MI250X GCDs

103

104

105

106

107

M
F
L
U

P
S

(c)

x = 12

x = 24

x = 48

20 22 24 26 28 210

PVC Tiles

103

104

105

106

107

M
F
L
U

P
S

(d)

x = 12

x = 24

x = 48

Idealized Prediction

HARVEY - CUDA

HARVEY - Kokkos CUDA

ProxyApp - CUDA

ProxyApp - Kokkos CUDA

HARVEY - Kokkos OpenACC

HARVEY - HIP

HARVEY - Kokkos HIP

ProxyApp - HIP

ProxyApp - Kokkos HIP

ProxyApp - Kokkos OpenACC

HARVEY - SYCL

HARVEY - Kokkos SYCL

ProxyApp - SYCL

ProxyApp - Kokkos SYCL

Fig. 4. Backend comparison of HARVEY and LBM proxy app piece-wise strong scaling performance (with LBM Proxy-App simulation-
Size value "X" labeled on the graph) to performance predictions using a variety of backends across 4 different systems: (a) Summit, (b)
Polaris, (c) Crusher, (d) Sunspot.

4 CONCLUSION AND FUTUREWORK

This study has established a framework for systematically evaluating the performance portability of heterogenous
programming models on modern supercomputers, using a real-world application. We demonstrated the utility of a
performance model and proxy application in facilitating the portability analysis. With a large number of backends,
Kokkos was the most portable of the codes and could be run on every system used here, but required the most work
upfront in manual porting. HIP, on the other end, was the least portable but required the least porting effort. In future
work, we will evaluate performance portability of programming models in the context of fluid-structure simulations of
biological cells.

ACKNOWLEDGMENTS

Computing support for this work came from the Argonne National Laboratory (ANL) Aurora Early Science program.
An award of compute time was provided by the INCITE Program. This research also used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-
00OR22725.

REFERENCES
[1] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S.

Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan
Sunderland, Bruno Turcksin, and Jeremiah Wilke. Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions on Parallel and
Distributed Systems, 33(4):805–817, 2022. doi: 10.1109/TPDS.2021.3097283.

[2] Amanda Peters Randles, Vivek Kale, Jeff Hammond, William Gropp, and Efthimios Kaxiras. Performance analysis of the lattice boltzmann model
beyond navier-stokes. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pages 1063–1074. IEEE, 2013.

[3] William Ladd, Christopher Jensen, Madhurima Vardhan, Jeff Ames, Jeff R Hammond, Erik W Draeger, and Amanda Randles. Optimizing cloud
computing resource usage for hemodynamic simulation. In 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
568–578. IEEE, 2023.

[4] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. Evaluating attainable memory bandwidth of parallel programming models
via babelstream. International Journal of Computational Science and Engineering, 17(3):247–262, 2018.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Methods
	2.1 Description of applications
	2.2 Overview of computing systems and porting procedure
	2.3 Performance evaluation
	2.4 Description of the GPU performance model

	3 Results
	3.1 Comparison of native programming models on different hardware
	3.2 Comparison of programming model backends

	4 Conclusion and Future Work
	References

