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Case Study for Performance Portability of GPU Programming Frameworks for
Hemodynamic Simulations

ARISTOTLE MARTIN, Duke University, USA
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Preparing for the deployment of large scientific and engineering codes on GPU-dense exascale systems is made challenging by the
unprecedented diversity of vendor hardware and programming model alternatives for offload acceleration. To leverage the exaFLOPS
of GPUs from Frontier (AMD) and Aurora (Intel), users of high performance computing (HPC) legacy codes originally written to target
NVIDIA GPUs will have to make decisions with implications regarding porting effort, performance, and code maintainability. To
facilitate HPC users navigating this space, we have established a pipeline that combines generalized GPU performance models with
proxy applications to evaluate the performance portability of a massively parallel computational fluid dynamics (CFD) code in CUDA,
SYCL, HIP, and Kokkos with backends on current NVIDIA-based machines as well as testbeds for Aurora (Intel) and Frontier (AMD).
We demonstrate the utility of predictive models and proxy applications in gauging performance bounds and guiding hand-tuning
efforts.

CCS Concepts: • Computing methodologies → Parallel programming languages; Massively parallel and high-performance

simulations; • Hardware→ Emerging architectures.

Additional Key Words and Phrases: Performance portability, Proxy applications, Computational fluid dynamics

1 INTRODUCTION

With the advent of diverse GPU-dense node architectures in exascale platforms, the issues surrounding performance
portability of HPC codes across vendor hardware have taken center stage. The transition from predominantly NVIDIA
GPU-based systems like Summit (ORNL) and Lassen (LLNL) to platforms consisting of nodes centered around Intel
(Aurora, ALCF) and AMD (Frontier, ORNL) GPUs means that HPC users have to translate kernels written in CUDA to
alternative offload acceleration languages supported on these devices. Vendors have developed software infrastructure
centered around different programming models tailored to their hardware, which includes automated porting assist tools,
such as AMD’s HIPIFY. Beyond the vendor supported languages, users will also be able to choose from heterogeneous
programming frameworks such as Kokkos [1], which includes an ever-growing list of supported backends that includes
CUDA, HIP, and SYCL, among others. Selecting a programming model for a given application and hardware specification
requires a detailed comparative analysis and will need to consider the relative porting efforts.

Here, we describe our experiences in porting a massively parallel fluid dynamics code, HARVEY [2], from its native
CUDA implementation to SYCL, HIP, and Kokkos with CUDA, SYCL, HIP, and OpenACC as backend programming
models. We establish a pipeline that uses predictive GPU performance models together with a proxy application to
facilitate the porting process and guide additional hand-tuning.
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Fig. 1. Geometry setup of the test problem.

2 METHODS

2.1 Description of applications

The main application we use is HARVEY [2], an in-house, highly scalable CFD code based on the lattice Boltzmann
method (LBM) developed to simulate blood flow in image-derived vasculature. Alongside HARVEY, we conduct runs
using an open source proxy application based on LBM that solves simple tubular flows. To facilitate direct comparisons
between the two applications, a cylindrical vessel is used for flow simulations as depicted in Fig. 1.

2.2 Overview of computing systems and porting procedure

Simulations are conducted on Summit (ORNL/NVIDIA V100), Polaris (ALCF/NVIDIA A100), Crusher (ORNL/AMD
MI250X), and Sunspot (ALCF/Intel PVC), depicted in Fig. 2. We start with native CUDA versions of both HARVEY and
the proxy app, and apply the same porting methods to both applications. SYCL codes are generated through the use of
the DPC++ Compatibility Tool (DPCT). HIP ports are generated with HIPIFY. The Kokkos versions are fully manual
ports.

2.3 Performance evaluation

Performance is measured in millions of fluid lattice updates per second (MFLUPS), which is a representative performance
measure for LBM-based codes [2]. We strong scale piece-wise to maintain adequate GPU occupancy over a range of
logical GPUs (equivalent to one PVC tile or a single graphics compute die on MI250X) and then increase the problem
size proportionately to the increase in the total GPU count, or MPI task count. We scaled the number of GPUs in powers
of 2 and doubled the scaling factor 𝑥 of the geometry shown in Fig. 1 after increasing the number of GPUs by a factor
of 8. Specifically, we sweep over 𝑥 = 12, 24, 48, representing cubic increases in the number of fluid points.

Authors’ addresses: Aristotle Martin, aristotle.martin@duke.edu, Duke University, 534 Research Dr., Durham, North Carolina, USA, 27705; Amanda
Randles (ADVISOR), amanda.randles@duke.edu, Duke University, 534 Research Dr., Durham, North Carolina, USA, 27705.
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Fig. 2. Overview of the study, which evaluate the performance portability of different programming models and hardware configura-
tions between HARVEY and an LBM proxy app. This diagram illustrates the diverse range of hardware and programming platforms
investigated

.

2.4 Description of the GPU performance model

To help evaluate the ported codes, we extended a performance model previously developed by our group in [3]. The
model uses the fact that LBM is memory bandwidth bound and approximates the time required for a GPU to process
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Fig. 3. Hardware comparison of HARVEY and LBM Proxy-App piecewise scaling performance (with LBM Proxy-App simulationSize
value "X" labeled on the graph) to prediction using the native backend to each system on Summit (CUDA), Crusher (HIP), Polaris
(CUDA), and Sunspot (SYCL).

fluid points as a function of the bandwidth measured with the Babel-STREAM benchmark [4]. The model also considers
the latency of on-node and inter-node MPI message passing directly between GPUs, as well as host-device memory
transfers, using a custom GPU PingPong benchmark. The model was used to predict the upper bound of piece-wise
strong scaling performance in MFLUPS on each system of interest.

3 RESULTS

3.1 Comparison of native programming models on different hardware

We evaluated the relative performance of native programming models to each system for HARVEY and the LBM proxy
app, along with corresponding performance predictions, shown in Fig. 3. Overall, native CUDA on NVIDIA A100s
of Polaris outperformed the other native models, seen with both HARVEY and the proxy app. For the smallest GPU
counts, HIP performs the worst, but then becomes competitive for multi-node runs. The SYCL code exhibited the largest
performance gains during the weak scaling portions of the graph.

3.2 Comparison of programming model backends

Fig. 4 shows the relative performance of programming models versus the native model on each system used in this
study. Overall, the native programming models generally outperform the “off-brand" models.
Manuscript submitted to ACM
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Fig. 4. Backend comparison of HARVEY and LBM proxy app piece-wise strong scaling performance (with LBM Proxy-App simulation-
Size value "X" labeled on the graph) to performance predictions using a variety of backends across 4 different systems: (a) Summit, (b)
Polaris, (c) Crusher, (d) Sunspot.

4 CONCLUSION AND FUTUREWORK

This study has established a framework for systematically evaluating the performance portability of heterogenous
programming models on modern supercomputers, using a real-world application. We demonstrated the utility of a
performance model and proxy application in facilitating the portability analysis. With a large number of backends,
Kokkos was the most portable of the codes and could be run on every system used here, but required the most work
upfront in manual porting. HIP, on the other end, was the least portable but required the least porting effort. In future
work, we will evaluate performance portability of programming models in the context of fluid-structure simulations of
biological cells.
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