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Machine Learning (ML) has become an increasingly popular approach to accelerate traditional workflows. Critical to the use of
ML is the process of splitting datasets into training, validation, and testing subsets that are used to develop and evaluate models.
Common practice in the literature is to assign these subsets randomly. Although this approach is fast and efficient, it only measures
a model’s capacity to interpolate. Testing errors from random splits may be overly optimistic if given new data that is dissimilar
to the scope of the training set; thus, there is a growing need to easily measure performance for extrapolation tasks. To address
this issue, we report astartes, an open-source Python package that implements many similarity- and distance-based algorithms
to partition data into more challenging splits. astartes operates on arbitrary vector inputs, so its principles and workflow are
generalizable to any ML domain. astartes is available via the Python package managers pip and conda and is publicly hosted on
GitHub (github.com/JacksonBurns/astartes).
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1 STATEMENT OF NEED

Machine Learning (ML) has catalyzed rapid progress across science, especially in chemical kinetics [6, 10], drug discovery
[1, 13], materials science [12], and energy storage [5]. Researchers use data-driven methods to generate models that
accelerate steps in traditional workflows within some acceptable error tolerance. To facilitate adoption of these models,
researchers must critically think about several topics, such as comparing model performance to relevant baselines,
operating on user-friendly inputs, and reporting performance on both interpolative and extrapolative tasks. astartes
aims to make it straightforward for ML scientists and researchers to focus on rigorous hyperparameter optimization
and accurate performance evaluation.

astartes’ key function train_val_test_split returns splits for training, validation, and testing sets using an
sklearn-like interface. These splits can then separately be used with any chosen ML model. This partitioning is
crucial since best practices in data science dictate that avoiding data leakage and overfitting requires optimizing
hyperparameters with a validation set and using a held-out test set to accurately measure performance on unseen data
[3, 4, 7, 9, 11]. Unfortunately many published papers across domains mention training and testing sets but not validation
sets, implying that they optimize the hyperparameters to the test set. This data leakage leads to overly optimistic results.
However, for users interested in quickly obtaining preliminary results without using a validation set, astartes also
implements an sklearn-compatible train_test_split function.
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2 RELATED SOFTWARE AND CODE AVAILABILITY

In theML space astartes functions as a drop-in replacement for the ubiquitous train_test_split from scikit-learn

[8]. Transitioning existing code to use this newmethodology is as simple as running pip install astartes, modifying
an import statement at the top of the file, and then specifying an additional keyword parameter. astartes has been
designed to allow for maximum interoperability with other packages, using few dependencies, supporting all platforms,
and validated support for Python 3.7 through 3.11. Specific tutorials on this transition are provided in the online
documentation for astartes, which is available on GitHub (github.com/JacksonBurns/astartes).

Here is an example workflow using texttttrain_test_split taken from the scikit-learn documentation [8]

import numpy as np

from sklearn.model_selection import train_test_split

X, y = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, random_state=42)

To switch to using astartes, from sklearn.model_selection import train_test_split becomes from astartes

import train_test_split and the call to split the data is nearly identical and simple in the extensions that it provides:

import numpy as np

from astartes import train_test_split

X, y = np.arange(10).reshape((5, 2)), range(5)

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, sampler="kmeans", random_state=42)

With this small change, an extrapolative sampler based on k-means clustering will be used.
Inside cheminformatics, astartes makes use of all molecular featurization options implemented in AIMSim [2],

which includes those from virtually all popular descriptor generation tools used in the cheminformatics field.
The codebase itself complies with pyOpenSci software standards, having a clearly defined contribution guideline and

thorough, easily accessible documentation. astartes uses GitHub actions for Constant Integration testing including
unit tests, functional tests, and regression tests. Test coverage is >99% and all proposed changes must maintain this
standard as well as satisfy the regression tests.
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