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A Heterogeneous, In Transit Approach for Large Scale Cellular Modeling
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1 INTRODUCTION

The field of in silico cellular modeling has made notable strides in number of cells that can be simultaneously modeled
[4]. The availability of modern, high-performance systems has allowed researchers to conduct simulations at much
larger scales, leading to more precise representations of critical physiological phenomena (immune response, molecular
metabolism [3] [6]). While computational capabilities have grown exponentially, I/O performance has lagged behind.
To address this issue, in situ-based methodologies, in which data is analyzed while in memory (Figure 1), have
gained traction. These methods are not without drawbacks, stemming from overhead introduced with coupling the
analysis/simulation [1]. To overcome these limitations, in transit methods have emerged, where data is handed off to
separate visualization "workers" to decouple the tasks of visualization and simulation [5]. In this work, we present
an in-transit method that enables concurrent simulations on separate MPI threads, harnessing the heterogeneity of
leadership-class systems to overcome I/O limitations and enhance overall efficiency.

Fig. 1. Example in situ visualization of a cell simulation. By maintaining accurate simulation data on a separate thread,
we facilitate data analysis in transit whilst data remains in memory.
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2 METHODOLOGY

In this study, we propose an in-transit algorithm designed to decouple data generation and visualization tasks during
simulations. To evaluate the effectiveness of our approach, we implement and assess the framework within the context
of the massively parallel fluid solver HARVEY [8, 9].

2.1 HARVEY: Massively parallel fluid solver

HARVEY utilizes stenciling, a technique characterized by spatial decomposition of a domain. "Halo regions" or "halos"
are exchanged between neighboring tasks during the communicative portion to supply the data necessary to complete
upcoming arithmetic operations. Within HARVEY, red blood cells (RBCs) are modeled as fluid-filled membranes
embedded in a Lagrangian mesh. HARVEY uses the immersed boundary method (IBM) [7], a common approach to
couple cell/fluid solvers. Algorithmic updates within these halo regions in both terms of fluid and cell necessitate
perpetual communication with all neighboring tasks to correctly update points. The complex representation of RBCs
within HARVEY makes this a memory-intensive undertaking.

2.2 Loosely Coupled In Transit

The traditional in transit workflow is characterized by passing data to a separate resource to perform analysis, allowing
undisturbed simulation progression. Our framework differs from the standard approach, using HARVEY’s stencil
structure to avoid a full data transfer. Stenciling allows us to employ a version in which halo data is transferred instead,
enabling access to the full simulation state without needing to perform any iterative communication between processes
and at a cheaper data movement cost. We can be split our framework two-fold: the recording and replay components.

2.2.1 Recording. Within HARVEY, n-dimensional buffers are initialized in anticipation of communication for IBM-
related operations. Separate buffers exist for each array of data being passed and are dynamically resized to fit the
volume of data to be passed and received. The buffers are cleared after each iteration to be used again. Our in-transit
framework allocates separate n +-dimensional "halo" buffers to accommodate the storage of multiple time steps worth
of information. During each time step, "halo" data is loaded into these buffers and remains in memory until accessed.
We co-opt the halo data exchanged between processes during HARVEY’s fluid- and cell-specific portions.

2.2.2 Replay. Each MPI process maintains two simulation states in parallel. This scheme is achieved through OpenMP
threading on separate portions of the node. The primary simulation is run on the CPU and GPU as usual, recording data
throughout. A separate secondary simulation is managed on only the CPU, loading data from the predefined buffers
at the appropriate time steps to circumvent the need for any communications. Therefore, MPI processes within this
simulation are independent outside of any enforced collective operations such as visualization. Analysis routines are
executed in situ from the secondary thread using its version of the simulation data, allowing the main simulation to
proceed unperturbed. The supply of halo data ensures that the secondary simulation maintains synchronicity with the
primary simulation.

3 RESULTS AND DISCUSSION

We focus our attention on the recording portion of our methodology, as it is the most costly operation among the two.
In Figure 2, we present our findings on the weak scaling of the recording portion within our in-transit framework.
Throughout the experiment, we performed up to 8,192 tasks, resulting in an overhead ranging from 2% to 6%. Interestingly,
Manuscript submitted to ACM
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we did not observe a clear correlation between task count and overhead. By leveraging pre-existing data transfers, we
managed the overhead effectively, especially when packing buffers with existing data. Although the overhead is not
entirely negligible, it remains comparable to the results of previous work done with the fluid-only version of a similar
framework [2].

Fig. 2. Weak scaling of in-transit recording iteration time across input size. The average number of cells per processor is
kept consistent across task counts. Cell data is recorded at each time step into preallocated halo buffers

4 SUMMARY

In the context of exascale computing, in situ-based data exploration offers significant advantages due to its low storage
requirements during data creation. This study introduces a framework that preserves these advantages while eliminating
the need for interval simulation stops or complete data transfers across nodes. We provide a detailed description of this
framework and analyze it to evaluate the associated overhead.
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