
Fast Operations on Compressed ArraysWithout Decompression
Harvey Dam Ganesh Gopalakrishnan (advisor)

University of Utah

Abstract

In modern scientific computing and machine learning systems, data move-

ment has overtaken compute as the performance bottleneck, thus mo-

tivating the wider adoption of lossy data compression. Unfortunately,

state-of-the-art floating-point array compressors such as SZ [1] and ZFP

[2] require decompression before operations can be performed on the

data. In this work, we show that compression methods can be designed

to allow efficient operations on compressed arrays without having to

first decompress. In particular, compression methods that consist of

only linear transformations and quantization allow certain operations on

compressed arrays without decompression. We develop such a compres-

sion method, called PyBlaz, the first compression method we know that

can compress arbitrary-dimensional arrays and directly operate on the

compressed representation, with all stages running on GPUs.a

Designing PyBlaz for Compressed-Space Operations

Evolution of PyBlaz: We chose Blaz [3], a compression method that sup-

ports certain operations on compressed matrices, as a simple starting point,

extending it to create PyBlaz. Our extensions consist of (1) adding a data

type conversion step to encourage storing floating-point components of

compressed arrays in low precision, (2) removing a differentiation step to

preserve linearity to facilitate more compressed operations, (3) supporting

arbitrary-dimensional arrays to allow wider application, and (4) using the

GPU throughout.

Compared to SZ [1] and ZFP [2], PyBlaz supports operations on arrays of

arbitrary dimensions while offering higher throughput. While its typical

compression ratio of 4 to 8 falls short of that of ZFP and SZ, it exceeds that

of lossless compressors, whose compression ratio is 1.5 to 4 [4].

The PyBlaz compression process (Figure 1) was designed to be composed

entirely of linear transformations and quantization, with each step imple-

mented for GPUs.

data type
conversion

blocking

binning pruningDCT flattening

blockwise

Figure 1. PyBlaz: From scientific data array to compressed-space representation. Blues

and greens represent floating-point numbers, reds represent integers, and grays represent

Boolean values.

agithub.com/damtharvey/pyblaz

Operations on Compressed Arrays

decompress operate compress

(a) Old

operate

(b) New

Figure 2. Operations on compressed arrays avoid decompression and recompression.

PyBlaz can perform the following operations in at most logarithmic timewith

sufficient threads. In most cases, the operation does not induce additional

error.

Operation Time Complexity Result Type Source of Error

Negation O(1) array none

Element-wise addition O(log n) array rebinning

Addition of a scalar O(log n) array rebinning

Multiplication by a scalar O(1) array none

Dot product O(log n) scalar none

Blockwise mean O(1) array none

Mean O(log n) scalar none

Covariance O(log n) scalar none

Variance O(log n) scalar none

L2 norm O(log n) scalar none

Cosine similarity O(log n) scalar none

Structural similarity index O(log n) scalar none

Table 1. Operations on compressed arrays.

Illustration of a Compressed Operation:
Mean of an Array

A compressed array repre-

sentation contains its original

shape s, its block shape i, the
biggest coefficient for each

block N , and the flattened

specified bin indices F .

To get the mean, multiplyN blockwise with the corresponding first flattened

bin indices, and divide the result by the radius, which half the number of

values supported by the bin index type minus one. Then divide the mean

of the result by the product of the element-wise square root of the length

of a block in each direction.

Time Performance Benchmarks

PyBlaz is faster than the most comparable compression method ZFP [2].

Unlike PyBlaz, ZFP’s compression process contains many non-linear trans-

formations, making operations on compressed arrays impractical. The

CUDA-accelerated version of ZFP is limited to fixed-rate mode and to 3 di-

mensions, without the usual features of ZFP for CPU, such as a user-defined

error bound.

Figure 3. Time to compress or decompress 3-dimensional arrays compared to SZ and ZFP.

Example Application: Diffing Simulation Outputs

expensive reference output on host

experimental outputs from devices
and L2 norms with reference

0.01 0.01 0.02 0.01 0.11 stop simulation

0.01 0.01 0.02 0.01 0.06

Figure 4. Scientific simulations often trade precision for speed. The compressed outputs

of several fast experimental simulations can be compared with that of an expensive

reference, stopping simulations that diverge too much. This way, PyBlaz can support

efficient ensemble searches while keeping simulation outputs compact, yet still allowing

comparison against reference compressed baselines.

Limitations and FutureWork

While we have characterized stage-wise error, further analysis is needed to

provide end-to-end error bounds.

We envisage PyBlaz will find many uses as a light-weight compressor usable

in settings where overall reliability is important, but exact error bounds are

less important, such as for compressing artificial neural network inputs and

parameters.

References

[1] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient transformation scheme for lossy data compression with point-wise relative error bound,” in

2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 179–189, 2018.

[2] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, 08 2014.

[3] M. Martel, “Compressed matrix computations,” in IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2022,

pp. 68–76, IEEE, 2022.

[4] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point data,” IEEE transactions on visualization and computer graphics, vol. 12,

pp. 1245–50, 09 2006.

harvey.dam@utah.edu Acknowledgements: DOE ASCR Award Number DE-SC0022252 and NSF CISE Awards 1956106, 2124100, and 2217154.

mailto:harvey.dam@utah.edu

	References

