
Calculon is a new open source analytical model for large language
model (LLM) co-design. It takes three specifications: (a) LLM
architecture; (b) LLM execution strategy defining parallelism and
optimizations; and (c) HW system description.
It produces time and resource utilization prediction, in a format
similar to profiler output

How we model LLMs

How we scale LLMs
We can grow model width (hidden size), or
model depth (number of layers).
Model ratio - a ratio between width and
depth.
There is no consensus on how to scale LLMs.
We picked linear ratio scaling implied by the
current LLM models.

Model width and depth should
change in the large power-of-two
steps to provide best performance
for tensor and pipeline parallelism

How tensor offloading works

1. Training a 100T-parameters LLM takes 1 TiB of offload
memory per GPU with bidirectional bandwidth of 100 GB/s

2. Larger LLMs need larger HBM even with offload memory

3. Small pipeline parallelism with interleaved schedule
helps overlap data parallel communication

4. Smaller LLMs around 1T struggle to scale to 16k GPUs
due to various parallelism bottlenecks

5. Smaller LLMs utilize larger data parallelism due to fewer
weights and gradients, smaller tensor parallel
communication overlap; batch size is the limiting factor

6. Increasing tensor parallelism is limited by fast network
size, smaller time for communication overlap, lower
efficiency of matrix multiplication

This analysis is made possible with Calculon,
an open sourced LLM analytical model for
fast HW/SW co-design for LLM training
Find us at https://github.com/calculon-ai

Fast memory with lower capacity only keeps a
few currently used transformer blocks.

Rest is offloaded to slower memory.

No overhead if enough time to prefetch tensors
for the next layer and offload tensors for the
previous layer during current layer’s compute.

That depends on memory bandwidth and
amount of compute.

How can we achieve the goal: train 100+T LLMs with 75% MFU?

100 GB/s is enough for offloading, allowing to use CXL or eth attached memory.
1-2 TiB is enough for most applications on different scale.
Smaller systems need more memory, smaller models need more bandwidth.

How big and how fast should offload memory be?

Key takeaways

Scaling Infrastructure to Support Multi-Trillion Parameter LLM Training
Mikhail Isaev1, Nic McDonald2, Rich Vuduc1

1Georgia Institute of Technology, 2NVIDIA

Calculon exploits LLM’s repetitive nature – same computation
repeats over again.
Just six LLM parameters define a single Transformer block.
LLM parameters and execution strategy builds an LLM execution DAG

Training model FLOPS utilization (MFU) on 4096 GPUs (green line marks 75%)

https://github.com/calculon-ai/calculon

