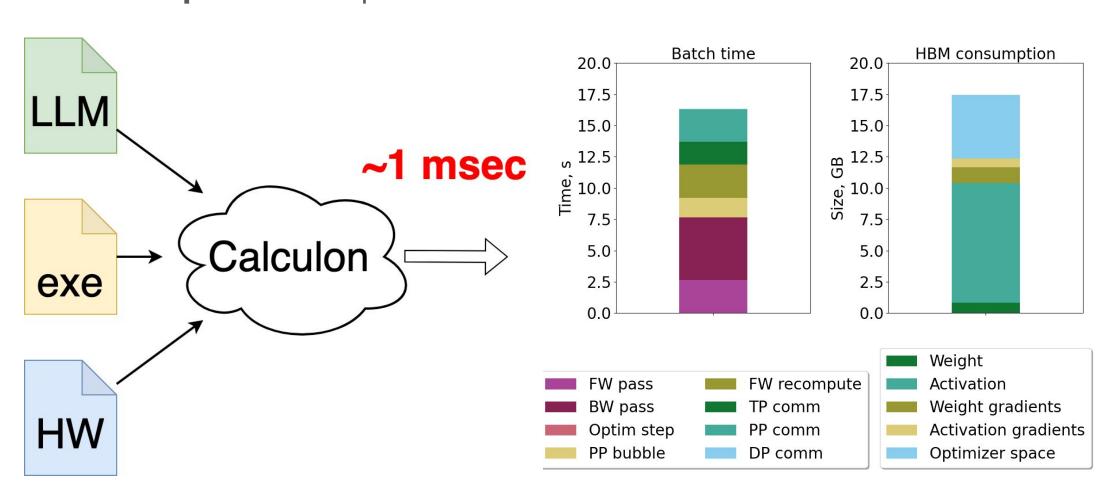


How we model LLMs

Calculon is a new **open source analytical model** for large language model (LLM) co-design. It takes three specifications: (a) **LLM** architecture; (b) LLM execution strategy defining parallelism and optimizations; and (c) **HW** system description. It produces time and resource utilization **prediction**, in a format

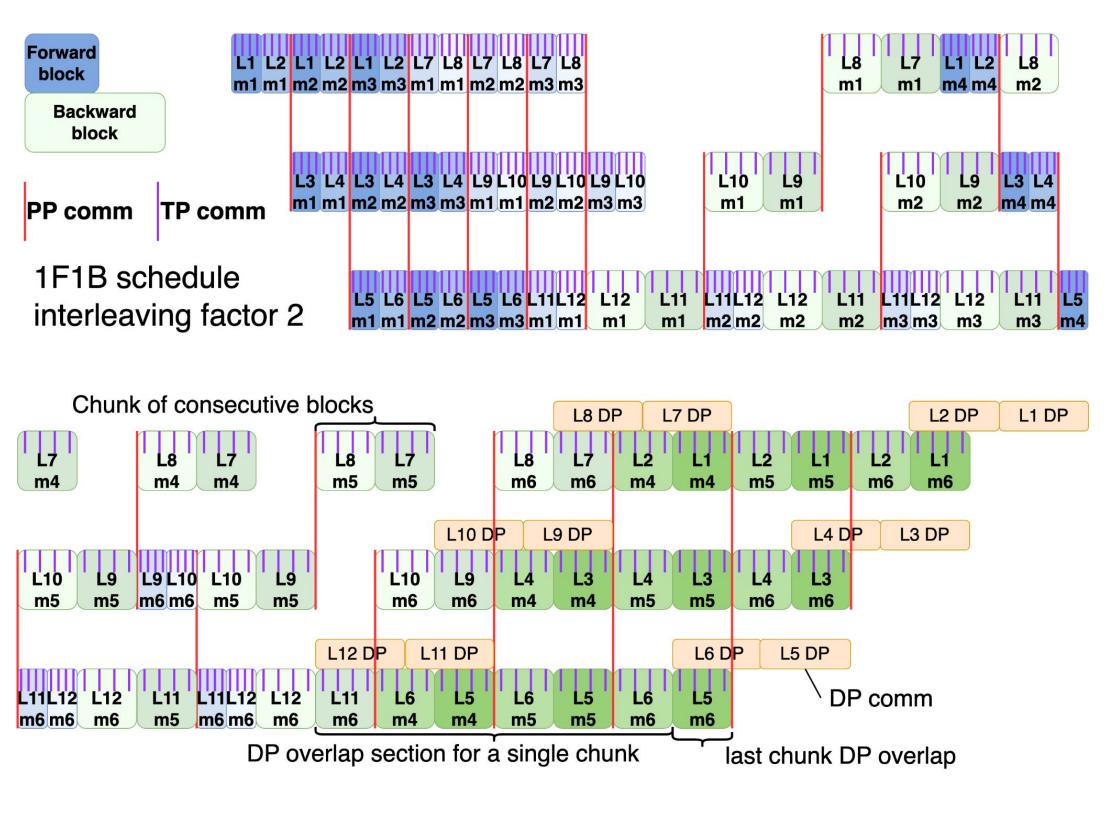
similar to profiler output



Calculon exploits **LLM's repetitive nature** – same computation repeats over again.

Just **six LLM parameters** define a single **Transformer block**.

LLM parameters and execution strategy builds an LLM execution DAG



How we scale LLMs

We can grow model width (hidden size), or model depth (number of layers). Model ratio - a ratio between width and

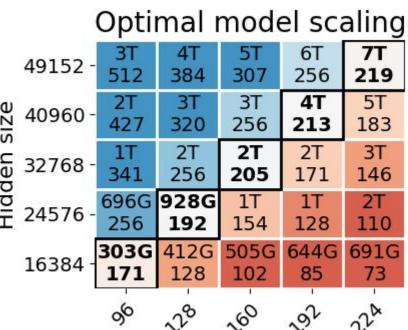
depth

There is **no consensus** on how to scale LLMs. We picked **linear ratio scaling** implied by the current LLM models.

TABLE I	
ASPECT RATIOS OF CURRENT L	LMs

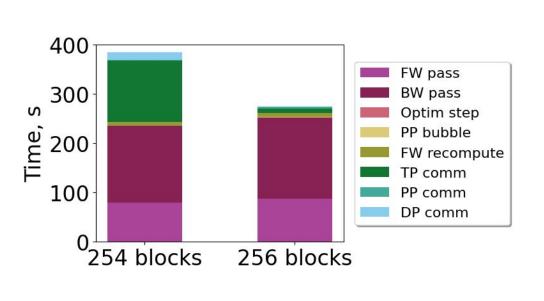
Name	Hidden	# Blocks	Aspect Ratio
GPT2-1.5B [16]	1600	48	33.3
Jurassic-6.5B [10]	4096	32	128
PaLM-8B [3]	4096	32	128
GPT3-13B [2]	5140	40	128.5
Megatron-40B [11]	6144	40	153.6
PaLM-62B [3]	8192	64	128
Chinchilla-64B [4]	8192	80	102.4
GPT3-175B [2]	12288	96	128
Jurassic-175B [10]	13824	76	181.9
Megatron-309B [11]	16384	96	170.7
TuringNLG-530B [20]	20480	105	195
PaLM-540B [3]	18432	118	156
Megatron-1T [11]	25600	128	200
-	1		

Model width and depth should change in the large power-of-two steps to provide best performance for tensor and pipeline parallelism



Number of transformer blocks

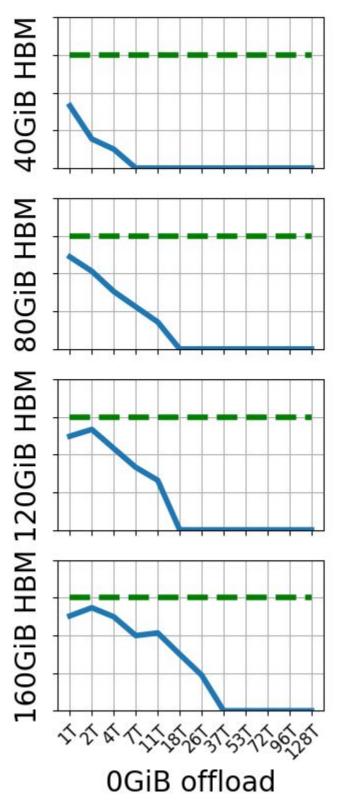
MULTI-1	TRILLION PA	LMs, from 17	
Name	Hidden	# Blocks	Aspect Ratio
1 T	24,576	128	192
2T	32,768	160	204.8
4T	40,960	192	213.3
7 T	50,176	224	224
11 T	60,416	256	236
18T	70,656	288	245
26T	81,920	320	256
37T	94,208	352	267.6
53T	106,496	384	277.3
72T	119,808	416	288
96T	134,144	448	299.4
128T	148,480	480	309.3

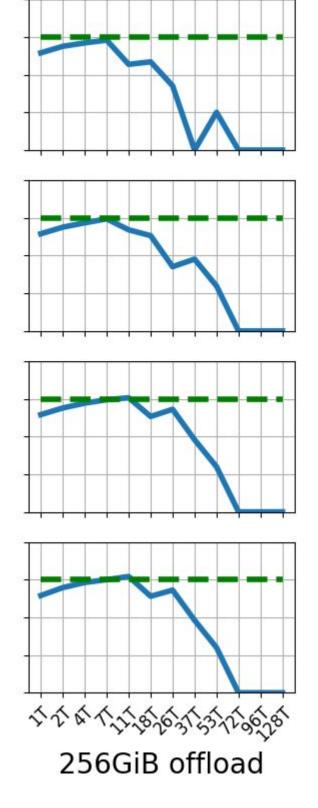


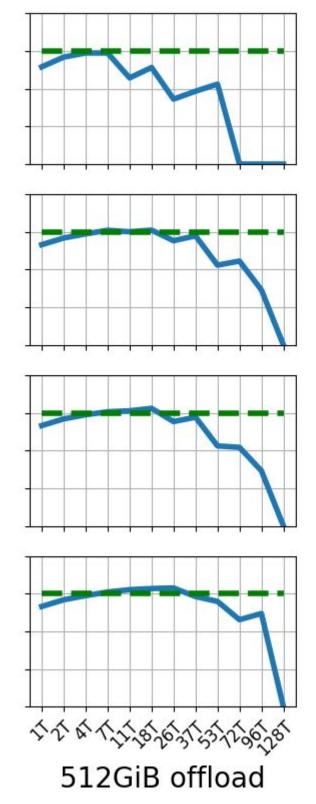
Scaling Infrastructure to Support Multi-Trillion Parameter LLM Training Mikhail Isaev¹, Nic McDonald², Rich Vuduc¹ ¹Georgia Institute of Technology, ²NVIDIA

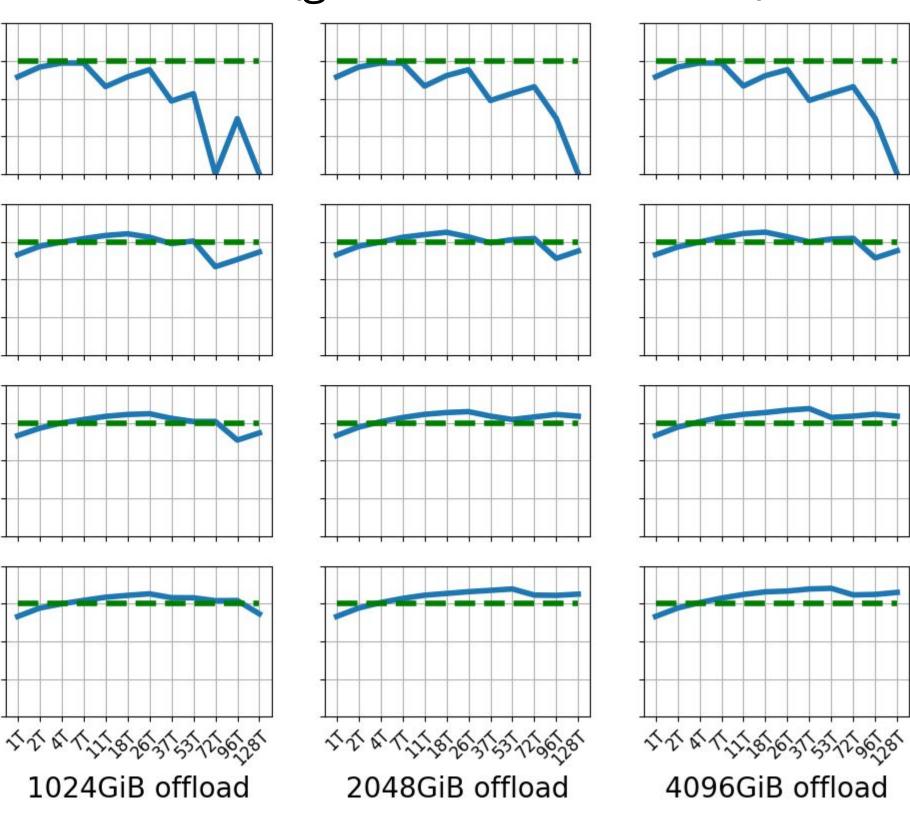
How can we achieve the **goal**: train 100+T LLMs with 75% MFU?

Training model FLOPS utilization (MFU) on 4096 GPUs (green line marks 75%)









Key takeaways

- 1. Training a **100T**-parameters LLM takes **1 TiB** of offload memory per GPU with bidirectional bandwidth of **100 GB/s**
- 2. Larger LLMs need larger HBM even with offload memory
- 3. Small pipeline parallelism with **interleaved schedule** helps overlap data parallel communication
- 4. Smaller LLMs around **1T struggle to scale to 16k** GPUs due to various parallelism bottlenecks
- 5. Smaller LLMs utilize larger data parallelism due to fewer weights and gradients, smaller tensor parallel communication overlap; **batch size is the limiting** factor
- 6. Increasing **tensor parallelism** is **limited** by fast **network** size, smaller time for communication overlap, lower efficiency of matrix multiplication

This analysis is made possible with **Calculon**, an open sourced LLM analytical model for fast HW/SW co-design for LLM training Find us at https://github.com/calculon-ai

PP comm

DP comm

Optimizer space

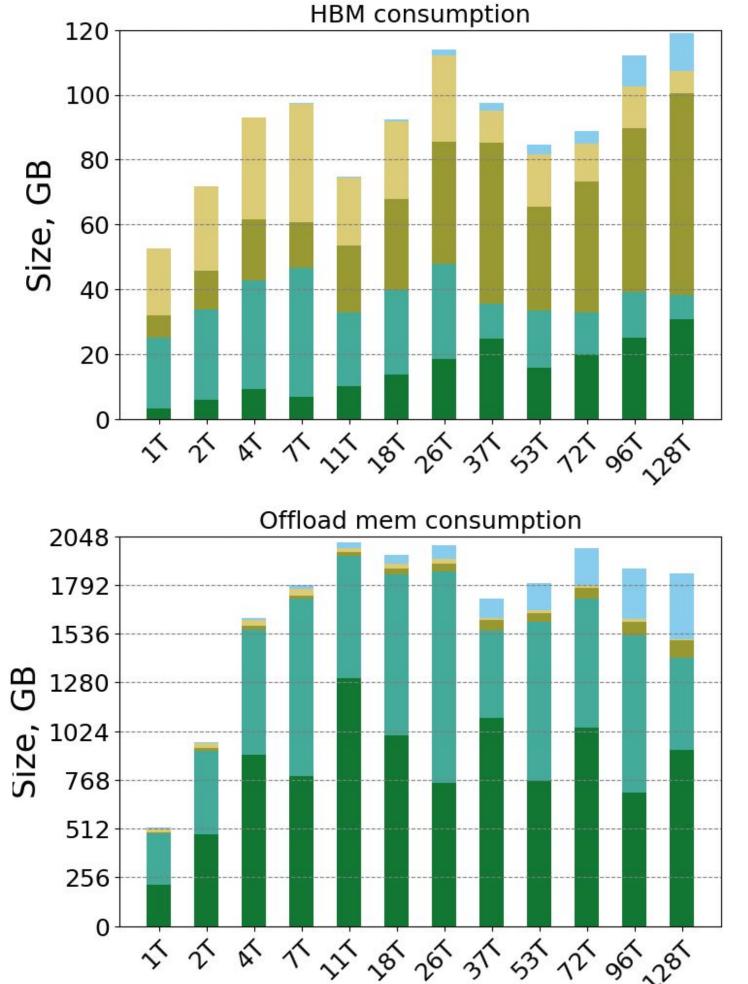
Batch time HBM consumption 8⁵⁰ S ئ س 5 40 20-FW recompute Weight Activation gradients TP comm

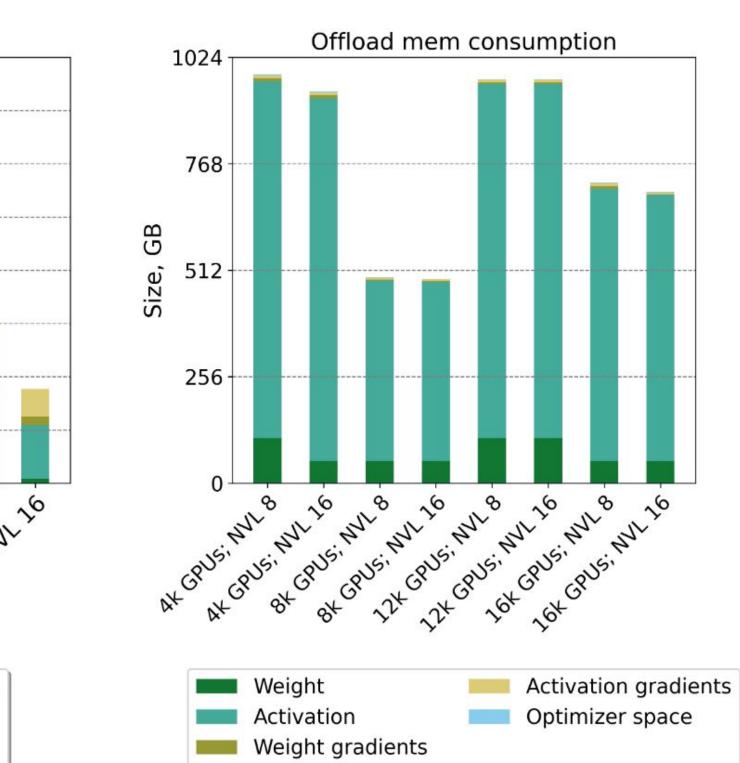
1T model time and memory consumption breakdown for different system configurations

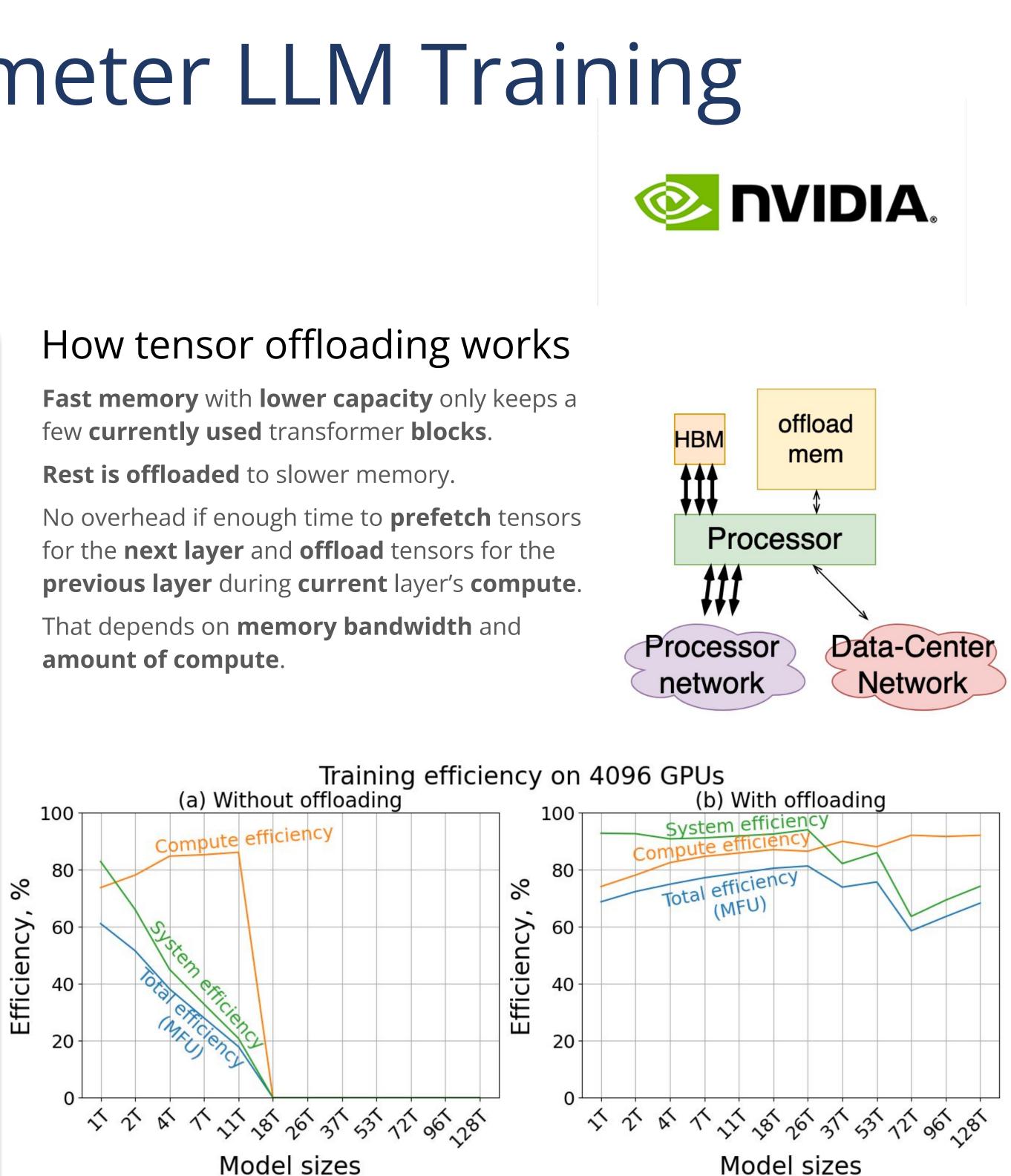
Activation

Weight gradients

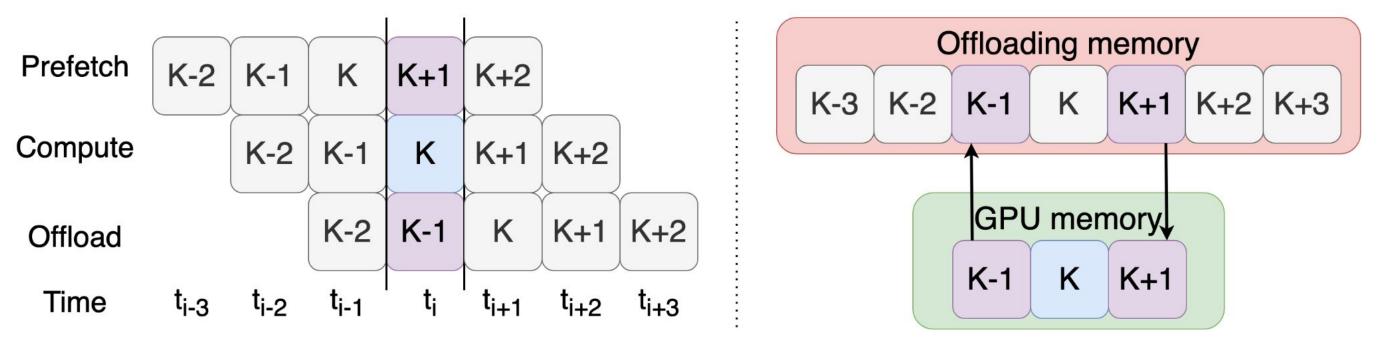
Memory consumption breakdown, 4096 GPUs





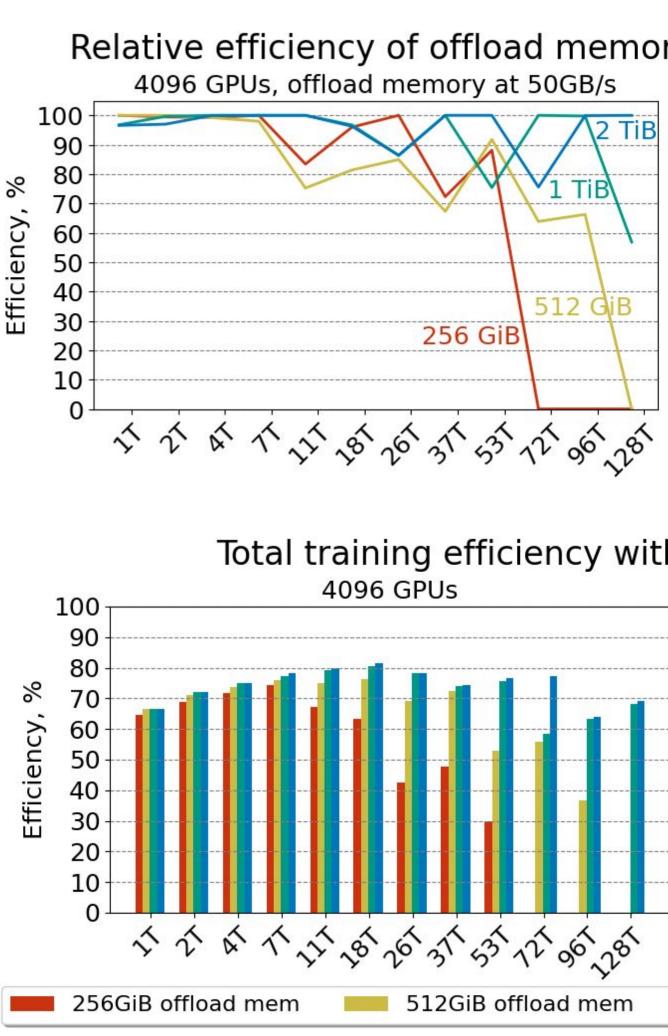


Compute pipeline



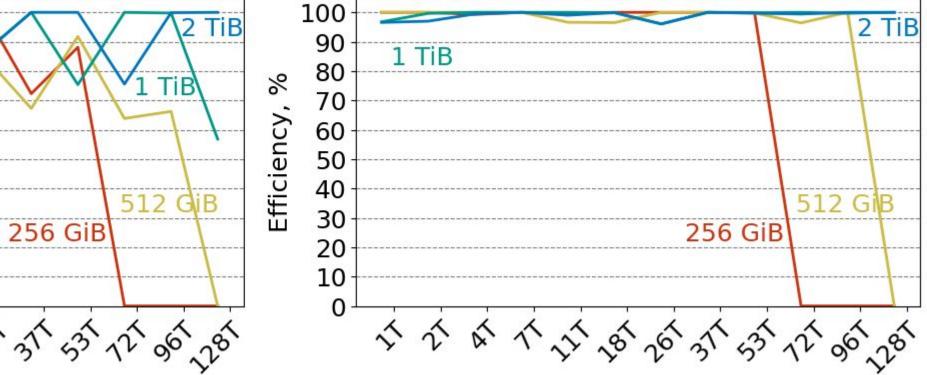
How big and how fast should offload memory be?

100 GB/s is enough for offloading, allowing to use *CXL* or *eth* attached memory. **1-2 TiB is enough** for most applications on different scale. Smaller systems need more memory, smaller models need more bandwidth.



Memory exchange at time *t*

Relative efficiency of offload memory compared to infinite bandwidth case 4096 GPUs, offload memory at 100GB/s



Total training efficiency with 100GB/s offloading bandwidth

