
Calculon is a new open source analytical model for large language 
model (LLM) co-design. It takes three specifications: (a) LLM 
architecture; (b) LLM  execution strategy defining parallelism and 
optimizations; and (c) HW  system description. 
It produces time and resource utilization prediction, in a format 
similar to profiler output

How we model LLMs

How we scale LLMs
We can grow model width (hidden size), or 
model depth (number of layers). 
Model ratio - a ratio between width and 
depth. 
There is no consensus on how to scale LLMs. 
We picked linear ratio scaling implied by the 
current LLM models.

Model width and depth should 
change in the large power-of-two 
steps to provide best performance 
for tensor and pipeline parallelism 

How tensor offloading works

1. Training a 100T-parameters LLM takes 1 TiB of offload 
memory per GPU with bidirectional bandwidth of 100 GB/s 

2. Larger LLMs need larger HBM even with offload memory

3. Small pipeline parallelism with interleaved schedule 
helps overlap data parallel communication

4. Smaller LLMs around 1T struggle to scale to 16k GPUs 
due to various parallelism bottlenecks

5. Smaller LLMs utilize larger data parallelism due to fewer 
weights and gradients, smaller tensor parallel 
communication overlap; batch size is the limiting factor

6. Increasing tensor parallelism is limited by fast network 
size, smaller time for communication overlap, lower 
efficiency of matrix multiplication

This analysis is made possible with Calculon,
an open sourced LLM analytical model for
fast HW/SW co-design for LLM training 
Find us at https://github.com/calculon-ai

Fast memory with lower capacity only keeps a 
few currently used transformer blocks.

Rest is offloaded to slower memory.

No overhead if enough time to prefetch tensors 
for the next layer and offload tensors for the 
previous layer during current layer’s compute.

That depends on memory bandwidth and 
amount of compute.

How can we achieve the goal: train 100+T LLMs with 75% MFU?

100 GB/s is enough for offloading, allowing to use CXL or eth attached memory.
1-2 TiB is enough for most applications on different scale.
Smaller systems need more memory, smaller models need more bandwidth.

How big and how fast should offload memory be?
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Calculon exploits LLM’s repetitive nature – same computation 
repeats over again.
Just six LLM parameters define a single Transformer block.
LLM parameters and execution strategy builds an LLM execution DAG

Training model FLOPS utilization (MFU) on 4096 GPUs (green line marks 75%)

https://github.com/calculon-ai/calculon

