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Wewish to consider what software and system configurationsmight
permit existing Large Language Models (LLMs), now at about 1 tril-
lion parameters [8], to scale with greater efficiency to even larger
model sizes.1 Our analysis is driven by the continued success and
efficacy of LLMs in a variety of applications [1, 2, 6, 8, 10, 12, 13] and
motivated by the observation that Model FLOPS Utilization (MFU)—
a common metric of efficiency for assessing how well specialized
Artificial Intelligence (AI) accelerators are utilized during model
training—can be as low as 50% or less [11]. A significant improve-
ment to MFU will be necessary to increase model sizes by 10×
(10 trillion parameters) or higher on architectures similar to cur-
rent systems. With a space requirement of 20 bytes per parameter,
to store just the model’s weights and optimizer state we would
need more than 200 TB of memory. For a system based on NVIDIA
H100 [9] Graphics Processing Unit (GPU) with 80GiB of high band-
width memory (HBM) memory, we would need 2,500 GPUs and
a fully model-parallel implementation to train such a model. No
known model-parallelism technique at this scale would be able to
provide anywhere near 50% MFU. Motivated by this example, we
aim to establish the system limitations that prevent us from training
multi-trillion parameter LLMs on large systems built using clusters
of 8 interconnected GPUs, similar to NVIDIA DGX and HGX.

We start by presenting a methodology for choosing well struc-
tured multi-trillion parameter LLMs. We focus on the LLM’s aspect
ratio defined as the ratio between the hidden dimension of the trans-
former block to the number of blocks (a.k.a., transformer layers).
Some recent research claims the ideal aspect ratio is a constant
128 [5], while others claim that the aspect ratio should increase
exponentially with the number of blocks [7]. Both of these analyses
were performed on LLMs 2 to 5 orders of magnitude smaller than
today’s production LLMs. In the absence of consensus among the
LLM experts, we follow the current practice of extrapolating aspect
ratios linearly with the number of transformer blocks.

For performance estimation we use Calculon [3], a fast open
source analytical model of LLM training performance modeling
that we developed.2 Calculon can estimate the time and resource
usage for a given LLM, system configuration, and software execu-
tion strategy in about 1 millisecond, allowing the exploration of
large design spaces having many billions of such configurations.
Calculonmodels LLM trainingwith tensor parallelism (TP), pipeline

1This work was presented at ASSYST, a non-archival workshop co-located with ISCA.
Full workshop paper [4] is available at https://openreview.net/forum?id=rqn2v1Ltgn0
2The full description of Calculon will be available in a paper by IsaevM. et al. “Calculon:
a methodology and tool for high-level co-design of systems and large language models”
accepted as part of SC’23 technical program.

parallelism (PP), and data parallelism (DP), allowing searches to de-
termine optimal split-parallelism configurations. The system speci-
fication describes an accelerator-based distributed system with a
two-level memory hierarchy connected to multiple networks.
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Figure 1: Model FLOPS Utilization (MFU) of LLMs ranging from 1 to 128 trillion
parameters on systems with various HBM and offloadinig memory capacity.
Green dashed line represents 75% MFU.

Overall, we find it will be critical to co-design the LLM, software,
and hardware to attain high performance and efficiency. Noticing
that large LLM training performance bottleneck is usually memory,
we propose a novel system design with larger pools of slower mem-
ory for tensor offload based on reuse patterns. After searching a
space of billions of system configurations and execution strategies
that provide best performance with given hardware configuration,
we found out that current H100 GPUs with 80 GiB of HBM enabled
with 512 GiB of tensor offloading capacity allows scaling to 11T-
parameter LLMs; and getting to 128T parameters requires 120 GiB
of HBM and 2 TiB of offloading memory, yielding 75%+MFU, which
is uncommon even when training much smaller LLMs today.

In conclusion, our findings can be summarized as follows:

(1) Training a hundred-trillion parameter LLM is feasible but
requires a secondary memory pool up to 1 TiB per GPU
with a bandwidth of 100GB/s bidirectionally.

(2) Strong scaling for a 1T model stalls around 12,288 GPUs, as
matrix multiplication becomes small, inefficient, and unable
to overlap with communication.

https://openreview.net/forum?id=rqn2v1Ltgn0
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(3) Scaling beyond 10T models requires more first-level mem-
ory, with HBM size scaling with model size.

(4) Growing model and system size beyond 10T parameters
and 10k GPUs demands a larger fast-network domain and
more targeted software optimizations.
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