
IM-POST-XXXXX

tid.llnl.gov/print

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52 07NA27344.

This poster presents the DYnamic and Asynchronous Data Streamliner
(DYAD) middleware that provides an efficient and transparent method
for data movement in scientific workflows based on the producer-
consumer paradigm. We develop DYAD on top of Flux, a fully
hierarchical HPC workload manager, and Unified Communication X
(UCX), a unified framework for networking on HPC systems. We
measure DYAD's performance with a suite of mini-apps and show how
it outperforms traditional methods for data transfer while providing a
high level of transparency.

ABSTRACT

CHALLENGES

Problem: Couple an application that produces data with another that consumes
the data with minimum or no code change.

No code change allows the benefits of
• Productivity (Fast construction of workflows with less effort)
• Easy debugging
• Portability (independent of any specific API other than widely used POSIX

IO)

Performance benefits:
• Use of local storage enables faster accesses to storage and allows avoiding

metadata operation bottleneck of PFS.
• Fine-grain file level synchronization with Ubique exposes further parallelism.

BENEFITS RESULTS

REFERENCES
[1] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: An interaction and coordination framework for
coupled simulation workflows,” in ACM Intl. Symp. on High Performance Distributed Computing,
2010.
[2] Maestro Workflow Conductor, https://maestrowf.readthedocs.io/en/latest/
[3] D. H. Ahn, N. Bass et al., “Flux: Overcoming scheduling challenges for exascale workflows,” Future
Generation Computer Systems, vol. 110, pp. 202–213, 2020.
[4] DYAD repository: https://github.com/flux-framework/dyad
[5] M. Taufer, S. Thomas et al., “Characterizing In Situ and In Transit Analytics of Molecular Dynamics
Simulations for Next-Generation Supercomputers,” in IEEE eScience, 2019.
[6] J. S. Yeom, D. H. Ahn et al., “Ubique: A New Model for Untangling Inter-task Data Dependence in
Complex HPC Workflows,” in IEEE eScience, 2023.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.
LLNL-POST-852752

There exists various approaches to resolve the inter-task data
dependence, namely the sequential approach, which is based on a
shared parallel file system (PFS), and the in situ approach [1]. However,
both approaches retain one or more of the following major drawbacks:
• Lack of synchronization support at the file/data object level:

requires workflow themselves to synchronize consumer and producer
tasks to handle cases like a consumer task attempting to read a file
before the producer completes its writing.

• Poor temporal/spatial locality: Workflows use coarse grained
synchronization thereby a consumer task does not start its program
execution before its dependent producer finishes its entire program
execution, incurring distant temporal distance to resolve a data
dependency, and each file travels a long spatial distance, missing
bypass opportunities.

• Low file metadata-operation performance: Massive numbers of
small files are often employed for emerging ML-based workflows,
and hence the performance of file transfers is ultimately limited by
the metadata performance of the PFS.

• Conflict with code change requirements: Many emerging
workflows compose reusable components with minimum or no code
change requirement on the pre-existing programs, and hence
extensive changes needed to implement the aforementioned
synchronization mechanism are often a nonstarter.

∗ Lawrence Livermore National Laboratory, ‡Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville

Ian Lumsden‡ (Student)
Jae-Seung Yeom∗, Hariharan Devarajan∗, Kathryn Mohror∗, Michela Taufer‡ (Advisors)

Enabling Transparent, High-Throughput Data Movement for Scientific Workflows on HPC Systems

APPROACH

Experimental setup:
• 1 second-long computation

between file I/Os.
• 1 process (either producer or

consumer) per node.
• Each producer-consumer pair

exchanges 64 files.
• Measured on Quartz@LLNL:

Intel Xeon E5-2695 v4 w/
128 GB

• Node local storage of DYAD:
tmpfs (memory)

• Parallel File System: Lustre

Parallel File System

In-transit

Ephemeral FS

Ubique

In situ

M
PI

Performance,
Fined-grained
Synchronization

• Sharing data across jobs
that do not necessarily
run concurrently.
• No sync for concurrent

jobs or ranks of a job
results in polling or
serializing

• Sharing across MPI ranks
of a job

• Sharing across job steps
(or local MPI ranks with
explicit sync)

• Not flexible
• Small capacity
• Custom coding

Capacity,
Flexibility

• Performance as close as in-situ
• Fine grained sync
• Capacity as close as in-transit

- description: producer task
 name: run-producer
 run:
 cmd: producer

- description: consumer task
 name: run-consumer
 run:
 cmd: consumer
 depends: [run-producer]

void producer() {
 for (i=1; I <= N; i++) {
 produce(data[i])
 write(data[i]);
 }
 }

(a) Producer-consumer example (b) Maestro [2] specification in YAML

void consumer() {
 for (i=1; I <= N; i++) {
 read(data[i]);
 consume(data[i])
 }
 }

Solution 1: Sequential approach, as exemplified with Maestro, relies on a shared
file system and an explicit synchronization between the end of the producer
application and the start of the consumer.

Solution 2: Ubique approach [6] relies on local storages as well as transparent
data transfer between storages and synchronization per shared file.

(a) Solution 1 (b) Solution 2

IMPLEMENTATION

CONCLUSIONS

• We present DYAD, a middleware for efficient and easy-to-use data file-
sharing for scientific workflows based on the producer-consumer paradigm
on HPC systems.

• We show that DYAD can speed up small- and mid-scale producer-consumer
workflows up to six times compared to a sequential approach for moving
data.

• In future work, we will examine DYAD's performance at larger scales and
for a broader set of applications.

Synthetic Producer-Consumer Benchmark

• Running the dyad service with Flux [3]
• flux exec r all flux module load dyad.so /ssd/managed_dir

• Running a user application with one of DYAD’s user interfaces
• Wrapper Library: replaces C file I/O calls with DYAD code using

LD_PRELOAD
• C++ Library: wraps C++ filestreams
• Python Library: wraps Python’s open function

USER INTERFACE

DYAD [4]
§ DYAD server runs on each node.
§ DYAD client only intercepts I/O on files under the directory it manages.
• If a file is on a local storage (LS), synchronize accesses and transfer it.
• If it is on a shared storage, only synchronize accesses.

Producer
§ p.1 write(manged_dir/filepath)
§ p.2 publish(<filepath, prod_rank>)
• If a file is written into managed_dir or its subdirectory, DYAD

registers the filepath into the global key-value-store (KVS) of Flux.
• KVS entry is a pair of filepath and prod_rank, where prod_rank is the

Flux rank of the service on the node where the producer is running on.
Consumer
§ c.1 query(filename)→ prod_rank
• Consumer queries KVS to obtain the rank of the file owner (producer).

Then, blocking wait.
§ c.2 rpc_get(prod_rank, filename)

• Consumer asks the owner rank to transfer the file. DYAD module
transfers the file to consumer using UCX. Once received, consumer
stores it on LS

§ c.3 make a copy of the data file on consumers LS
§ c.4 read(managed_dir/filename)

DYAD: An embodiment of the Ubique model under Flux [3] resource and job
management system.

ACM/IEEE International Conference on High Performance Computing, Networking, Storage, and Analysis (SC), November 12-17, 2023, Denver, Colorado, USA

Experimental setup:
• Built on the Analytics4MD

[5] framework
• Synthetic molecular dynamics

data generation and analysis
• 1 process (either producer or

consumer) per node.
• Each producer-consumer pair

exchanges 64 files.
• Measured on Corona@LLNL:

AMD Rome w/ 256 GB
• Node local storage of DYAD:

on-node NVRAM
• Parallel File System: Lustre

Molecular Dynamics-Inspired Producer-Consumer Benchmark

GitHub Repo:

https://github.com/flux-framework/dyad

