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This poster presents the DYnamic and Asynchronous Data Streamliner 
(DYAD) middleware that provides an efficient and transparent method 
for data movement in scientific workflows based on the producer-
consumer paradigm. We develop DYAD on top of Flux, a fully 
hierarchical HPC workload manager, and Unified Communication X 
(UCX), a unified framework for networking on HPC systems. We 
measure DYAD's performance with a suite of mini-apps and show how 
it outperforms traditional methods for data transfer while providing a 
high level of transparency.

ABSTRACT

CHALLENGES

Problem: Couple an application that produces data with another that consumes 
the data with minimum or no code change.

No code change allows the benefits of
• Productivity (Fast construction of workflows with less effort)
• Easy debugging
• Portability (independent of any specific API other than widely used POSIX 

IO)

Performance benefits:
• Use of local storage enables faster accesses to storage and allows avoiding 

metadata operation bottleneck of PFS. 
• Fine-grain file level synchronization with Ubique exposes further parallelism.

BENEFITS RESULTS
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There exists various approaches to resolve the inter-task data 
dependence, namely the sequential approach, which is based on a 
shared parallel file system (PFS), and the in situ approach [1]. However, 
both approaches retain one or more of the following major drawbacks:
• Lack of synchronization support at the file/data object level: 

requires workflow themselves to synchronize consumer and producer 
tasks to handle cases like a consumer task attempting to read a file 
before the producer completes its writing.

• Poor temporal/spatial locality: Workflows use coarse grained 
synchronization thereby a consumer task does not start its program 
execution before its dependent producer finishes its entire program 
execution, incurring distant temporal distance to resolve a data 
dependency, and each file travels a long spatial distance, missing 
bypass opportunities.

• Low file metadata-operation performance: Massive numbers of 
small files are often employed for emerging ML-based workflows, 
and hence the performance of file transfers is ultimately limited by 
the metadata performance of the PFS.

• Conflict with code change requirements: Many emerging 
workflows compose reusable components with minimum or no code 
change requirement on the pre-existing programs, and hence 
extensive changes needed to implement the aforementioned 
synchronization mechanism are often a nonstarter.
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APPROACH

Experimental setup:
• 1 second-long computation 

between file I/Os.
• 1 process (either producer or 

consumer) per node.
• Each producer-consumer pair 

exchanges 64 files.
• Measured on Quartz@LLNL: 

Intel Xeon E5-2695 v4 w/ 
128 GB

• Node local storage of DYAD: 
tmpfs (memory)

• Parallel File System: Lustre

Parallel File System

In-transit

Ephemeral FS

Ubique

In situ
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Performance,
Fined-grained 
Synchronization

• Sharing data across jobs 
that do not necessarily 
run concurrently.
• No sync for concurrent 

jobs or ranks of a job 
results in polling or 
serializing

• Sharing across MPI ranks 
of a job

• Sharing across job steps 
(or local MPI ranks with 
explicit sync)

• Not flexible
• Small capacity 
• Custom coding

Capacity,
Flexibility

• Performance as close as in-situ
• Fine grained sync
• Capacity as close as in-transit

- description: producer task
  name: run-producer
  run:
      cmd: producer

- description: consumer task
  name: run-consumer
  run:
      cmd: consumer
      depends: [run-producer]

void producer() {
      for (i=1; I <= N; i++) {
          produce(data[i])
          write(data[i]);
      }
  }

(a) Producer-consumer example   (b) Maestro [2] specification in YAML

void consumer() {
      for (i=1; I <= N; i++) {
          read(data[i]);
          consume(data[i])
      }
  }

Solution 1: Sequential approach, as exemplified with Maestro, relies on a shared 
file system and an explicit synchronization between the end of the producer 
application and the start of the consumer.

Solution 2: Ubique approach [6] relies on local storages as well as transparent 
data transfer between storages and synchronization per shared file.

(a) Solution 1                                                        (b) Solution 2  

IMPLEMENTATION

CONCLUSIONS

• We present DYAD, a middleware for efficient and easy-to-use data file-
sharing for scientific workflows based on the producer-consumer paradigm 
on HPC systems.

• We show that DYAD can speed up small- and mid-scale producer-consumer 
workflows up to six times compared to a sequential approach for moving 
data. 

• In future work, we will examine DYAD's performance at larger scales and 
for a broader set of applications.

Synthetic Producer-Consumer Benchmark

• Running the dyad service with Flux [3]
• flux exec r all flux module load dyad.so /ssd/managed_dir

• Running a user application with one of DYAD’s user interfaces
• Wrapper Library: replaces C file I/O calls with DYAD code using 

LD_PRELOAD
• C++ Library: wraps C++ filestreams
• Python Library: wraps Python’s open function

USER INTERFACE

DYAD [4]
§ DYAD server runs on each node.
§ DYAD client only intercepts I/O on files under the directory it manages.
• If a file is on a local storage (LS), synchronize accesses and transfer it.
• If it is on a shared storage, only synchronize accesses.

Producer
§ p.1 write(manged_dir/filepath)
§ p.2 publish(<filepath, prod_rank>)
• If a file is written into managed_dir or its subdirectory, DYAD 

registers the filepath into the global key-value-store (KVS) of Flux.
• KVS entry is a pair of filepath and prod_rank, where prod_rank is the 

Flux rank of the service on the node where the producer is running on.
Consumer
§ c.1 query(filename)→ prod_rank
• Consumer queries KVS to obtain the rank of the file owner (producer). 

Then, blocking wait.
§ c.2 rpc_get(prod_rank, filename)

• Consumer asks the owner rank to transfer the file. DYAD module 
transfers the file to consumer using UCX. Once received, consumer 
stores it on LS

§ c.3 make a copy of the data file on consumers LS
§ c.4 read(managed_dir/filename)

DYAD: An embodiment of the Ubique model under Flux [3] resource and job 
management system.
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Experimental setup:
• Built on the Analytics4MD 

[5] framework
• Synthetic molecular dynamics 

data generation and analysis
• 1 process (either producer or 

consumer) per node.
• Each producer-consumer pair 

exchanges 64 files.
• Measured on Corona@LLNL: 

AMD Rome w/ 256 GB
• Node local storage of DYAD: 

on-node NVRAM
• Parallel File System: Lustre

Molecular Dynamics-Inspired Producer-Consumer Benchmark

GitHub Repo:

https://github.com/flux-framework/dyad

