L2 Nationar Laboratony, Enabling Transparent, High-Throughput Data Movement for Scientific Workflows on HPC Systems s o

KNOXVILLE
seie, lan Lumsden* (Student)
:;; :,‘o CASC Jae-Seung Yeom*, Hariharan Devarajan*, Kathryn Mohror*, Michela Taufer* (Advisors)
‘ Center for Applied

L 4 ‘00 cientific Computing
Qe e * Lawrence Livermore National Laboratory, *Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville

ABSTRACT APPROACH BENEFITS RESULTS

This poster presents the DYnamic and Asynchronous Data Streamliner Problem: Couple an application that produces data with another that consumes No code CI.‘a.“ge allows the ber.leﬁts of | Synthetic Producer-Consumer Ben(?hmark
(DYAD) middleware that provides an efficient and transparent method the data with minimum or no code change. * Productivity (Fast construction of workflows with less effort) Experimental setup:
for data movement in scientific workflows based on the producer- * Easy debugging 400 T s * 1 second-long computation
consumer paradigm. We develop DYAD on top of Flux, a fully void producer() { . - description: producer task * Portability (independent of any specific API other than widely used POSIX 3507 ‘o 1;?’;,&”“3 s ST > between file I/Os.
hierarchical HPC workload manager, and Unified Communication X 27 (S0 | <= 1 e name: run-producer 10) 300 -+ 18-Ubique /% 1 process (either producer or
_ ’ , produce(datali]) run: 3 250 - e consumer) per node.
(UCX), a unified framework for networking on HPC systems. We write(datali]); emd: producer 8 e < .
measure DYAD's performance with a suite of mini-apps and show how } Performance benefits: 2 1. >< e . S;Ccllllairoeclugjrf-ﬁggsumer pair
E 150 | s B |
it outperforms traditional methods for data transfer while providing a } - description: consumer task « Use of local storage enables faster accesses to storage and allows avoiding ol e . M - q [LNL:
high level of transparency. void consumer() { name: run-consumer metadata operation bottleneck of PFS. R— fromnen 3 T B — e R * I tez;s;(re 0];1 5Q2u 621522@2 / '
) : : , , 0 - ntel Xeon E5- v4 w
for (i=1; I <= N; i++) { run: * Fine-grain file level synchronization with Ubique exposes further parallelism. ’ 178 GB
read(datali]); cmd: consumer 0

i=1 without DYAD with DYAD :
} » Parallel File System: Lustre

There exists various approaches to resolve the inter-task data

: 2 4 8 16 32 64
CHALLENG ES consume(data[i]) dependS: [run-prOducer] Number of prod-cons pairs * Node local Storage of DYAD:
} I . ‘_ Coase-grain sync. I Fine-grain sync. tmpfs (memory)

dependence, namely the sequential approach, which 1s based on a (a) Producer-consumer example (b) Maestro [2] specification in YAML Molecular Dynamics-Inspired Producer-Consumer Benchmark
shared parallel file system (PFS), and the in situ approach [1]. However, (a) Solution 1 (b) Solution 2 - Experimental setup:
roaches retain one or more of the following major dr ks: : - -
both approaches retain one or more of the following major drawbacks Solution 1: Sequential approach, as exemplified with Maestro, relies on a shared Built on the Analytics4MD
e Lack of synchronization SllppOl't at the file/data Object level: file system and an explicit synchronization between the end of the pI‘OdLlCGI‘ IMPLEMENTATION 1201 i Sz o SR e X [5] framework
requires workflow themselves to synchronize consumer and producer application and the start of the consumer. 1004 o « Synthetic molecular dynamics
tasks to handle cases like a consumer task attempting to read a file SyNnc DYAD: An embodiment of the Ubique model under Flux [3] resource and job _ - 100ME-DYAD data generation and analysis
before the producer Completes ltS ertlng : management SYStCm. ﬁ 801 —4- 10MB-DYAD | proccess (either pI'OdU.CGI' or
. . : roducer £ > IMB-PFS consumer) per node.
* Poor temporal/spatial locality: Workflows use coarse grained P1 e = 601 —+ 1mB-DvVAD .
L. . _ 185B-PFS * Each producer-consumer pair
synchronization thereby a consumer task does not start 1ts program o DYAD (wrapper + service) 40 (=¥~ 185B-DYAD exchanges 64 files
execution before 1ts dependent producer finishes its entire program P-1\; ? + Measured on Corona@LLNL:
execution, incurring distant temporal dlstanc§ to resolve a Qat'fl P AMD Rome w/ 256 GB
dependency, and each file travels a long spatial distance, missing Lo | . . . e Node local storace of DYAD:
" Shared FS p.2! ! 1 2 4 8 16 32 g '
bypaSS opportunities. A Number of prod-cons pairs on-node NVRAM
* Low file metadata-operation performance: Massive numbers of e « Parallel File System: Lustre
. A || 1
small files are often employed for emerging ML-based workflows, c.1 post; .2
and hence the performance of file transfers is ultimately limited by Solution 2: Ubique approach [6] relies on local storages as well as transparent ! o CONCLUSIONS
the metadata performance of the PFS. data transfer between storages and synchronization per shared file. eeaIproraae
. . . : c.lreplyy c3f\c4 * We present DYAD, a middleware for efficient and easy-to-use data file-
* Contlict with code change requirements: Many emerging . . .
, e YAD sharing for scientific workflows based on the producer-consumer paradigm
workflows compose reusable components with minimum or no code P1 m on HPC systems
change requirement on the pre-existing programs, and hence DYAD [4] | * We show that DYAD can speed up small- and mid-scale producer-consumer
extensive changes needed to implement the aforementioned " DYAD server runs on each node. workflows up to six times compared to a sequential approach for moving
synchronization mechanism are often a nonstarter. Local Storage KVS + " DYAD client only intercepts I/O on files under the directory it manages. data.
\ Overlay network * If a file 1s on a local storage (LS), synchronize accesses and transfer it. . . |
N | | « If it is on a shared storage, only synchronize accesses. * In future work, we will examine DYAD's performance at larger scales and
o . /0 intercepting Producer for a broader set of applications.
* Performance as close as in-situ wrapper lib
* Fine gn.'ained sync | Local Storage - p.l write(manged_dir/ﬁlepath)
E— Capacity as close as in-transit [| p.z publlsh(<ﬁlepal‘h’ pI/Od_]/'ank>) REFERENCES
N in=d grEinet \ * If a file 1s written into managed_dir or its subdirectory, DYAD 10D M. Parachar and S Klacky. D A T ooord , o
_ Synchronization . - . Docan, M. Parashar, and S. Klasky, “Dataspaces: An interaction and coordination framework for
) z?zrfgg across MPIranks = * Not flexible P2 n registers the, ﬁlep E?th into the gIObal key_value_smre (KVS) of qux. coupled simulation workflows,” in ACM Intl. Symp. on High Performance Distributed Computing,
) 3 . * KVS entry is a pair of filepath and prod _rank, where prod rank is the 2010.
> (CVEITeIii) GOl Flux rank of the service on the node where the producer is running on. [2] Maestro Workflow Conductor, https://maestrowf.readthedocs.io/en/latest/

. (S:ra {;2§|al\c/|rslsf;§fssjﬁf; // in situ Consumer [3] D. H. Ahn, N. Bass et al., “Flux: Overcoming scheduling challenges for exascale workflows,” Future
explicit sync) _ USER |NTERFACE = c.1 querymlename)—) pmd_mnk Generation Computer Systems, vol. 110, pp. 202-213, 2020.

ST * Consumer queries KVS to obtain the rank of the file owner (producer). [4] DYAD repository: https:/github.com/flux-framework/dyad

Then, blocking wait. [5] M. Taufer, S. Thomas et al., “Characterizing In Situ and In Transit Analytics of Molecular Dynamics

* Sharing data across jobs

Running the dyad service with Flux [3]

PR ; Ephemeral FS . o) ; (J I f]) Simulations for Next-Generation Supercomputers,” in IEEE eScience, 2019.
at do not necessarily : c.2 rpc get(prod rank, filename e . .
run concurrently. / flux exec r all flux module load dyad.so /ssd/managed_dir pe_setprod_ [6]J. S. Yeom, D. H. Ahn et al., “Ubique: A New Model for Untangling Inter-task Data Dependence in
y

A A . o . , . * Consumer asks the owner rank to transfer the file. DYAD module Complex HPC Workflows,” in IEEE eScience, 2023.

jobs or ranks of a job < RSt * Running a user application with one of DYAD’s user interfaces transfers the file to consumer using UCX. Once received, consumer

res}"lt_s o el e Capacity, * Wrapper Library: replaces C file I/O calls with DYAD code using stores it on LS ACKNOWLEDGMENTS

serializing Flexibilit

' ! LD_PRELOAD = c.3 make a copy of the data file on consumers LS GitHub Repo:

o C++ Library: wraps C++ filestreams " c.4 read(managed dir/filename) OfEa50]

Db R D This work was performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.
LLNL-POST-852752

* Python Library: wraps Python’s open function

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52 07NA27344.

IM-POST-XXXXX
tid.linl.gov/print

https://github.com/flux-framework/dyad

