
Enabling Transparent, High-Throughput Data Movement for
Scientific Workflows on HPC Systems

Ian Lumsden1 (Student)
Jae-Seung Yeom2, Hariharan Devarajan2, Kathryn Mohror2, Michela Taufer1 (Advisors)

1University of Tennessee, Knoxville, TN, USA
2Lawrence Livermore National Laboratory, Livermore, CA, USA

ABSTRACT
This poster presents the DYnamic and Asynchronous Data Stream-
liner (DYAD) middleware that provides an efficient and transparent
method for data movement in scientific workflows based on the
producer-consumer paradigm. We develop DYAD on top of Flux,
a fully hierarchical HPC workload manager, and Unified Commu-
nication X (UCX), a unified framework for networking on HPC
systems. We measure DYAD’s performance with a suite of mini-
apps and show how it outperforms traditional methods for data
transfer while providing a high level of transparency.

1 INTRODUCTION
Scientific workflows move data, often in the form of files, between
tasks using the producer-consumer paradigm. This paradigm is
challenging to perform optimally due to the complexity of spatial
and temporal locality. For example, producer and consumer tasks
can be either collocated on the same nodes or placed on entirely
separate nodes depending on their resource requirements. Addi-
tionally, consumer tasks must be synchronized per-file or per-task
due to the data dependence between producer and consumer. As
a result, tasks can run concurrently or sequentially depending on
the desired synchronization frequency. Another challenge is that
existing data-sharing solutions may not be sufficient to support the
optimal synchronization frequency and may depend on persistent
data availability.

Two common data-sharing approaches in workflows aim to over-
come these challenges: the sequential and in situ approaches. In
the sequential approach, the consumer task runs after the producer
while using file storage (e.g., Lustre) to share data between tasks.
This approach is the most common due to its ease of use, but its
sequential execution and slow shared file storage cause poor per-
formance. In the in situ approach, the producer and consumer tasks
run concurrently, sharing data using a dedicated middleware (e.g.,
DataSpaces [2]). This approach performs best due to its parallel
execution and fast, resource-local storage solutions (e.g., in memory
data stores). Nevertheless, implementations of the in situ approach
usually require extensive modifications to workflow code.

To address these challenges, we propose DYAD, a middleware
that combines the benefits of both approaches while providing a
generality not found elsewhere (e.g., LowFive [3]). Our middleware
efficiently handles producer-consumer data file-sharing in scientific
workflows, providing performance and transparency. This poster
has two contributions. First, we present DYAD’s design, built on top
of Flux [1], a fully hierarchical HPC workload manager, and Unified

SC ’23, November 12–17, 2023, Denver, CO
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Communication X (UCX) [4], a unified framework for networking
on HPC systems. Second, we design a mini-app suite, including
a molecular dynamics (MD) workflow. We evaluate DYAD with
our mini-app and compare its performance sequentially. This work
shows that DYAD enables efficient data movement on HPC systems.

2 DESIGNING THE DYAD MIDDLEWARE
Designing DYAD’s software components. DYAD uses a disaggregated
server-client design [6]. The DYAD server is designed as a Flux
broker module (i.e., callbacks invoked on the Flux broker) [1]. This
allows the server to be distributed across the same compute nodes
as the producer and consumer tasks without using large amounts of
resources. The DYAD clients support workflow tasks through three
interfaces: (1) a C interceptor library, (2) a C++ filestream wrapper,
and (3) a Python module. DYAD’s interfaces can be integrated
into user code with minimal changes. All interfaces leverage a core
library that abstracts the networking for control and datamovement
to and from the DYAD server. Figure 1 shows the DYAD server and
client design.

Figure 1: DYAD server and client design.

Augmenting the DYAD server and core library with UCX. To support
different HPC systems, we design a communication abstraction on
top of the networking tasks DYAD performs to move data. This
abstraction is implemented as DYAD’s data transport layer. The
DYAD server and core library use the data transport layer to move
data between producer and consumer. We implement this layer
using UCX [4] to enhance DYAD’s performance. Specifically, we
use UCX’s tag-matching two-sided communication. We choose
this type of communication because it implements an MPI-style
rendezvous protocol that automatically and transparently switches
from two-sided communication to one-sided remote direct memory
access communication based on data size.

Moving data with DYAD. Users start the DYAD server using Flux
commands [1]. When starting their workflow tasks, users define

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC ’23, November 12–17, 2023, Denver, CO

1 2 4 8 16 32
Number of prod-cons pairs

0

20

40

60

80

100

120

140
Tim

e (
se

c)

100MB-PFS
100MB-DYAD
10MB-PFS
10MB-DYAD
1MB-PFS
1MB-DYAD
185B-PFS
185B-DYAD

Figure 2: Times for theA4MDmini-app for different numbers
of producer-consumer pairs and different file sizes.

either a producer-managed or consumer-managed directory. DYAD
tracks these directories to trigger data production and consumption
events. When a file in the producer-managed directory is closed,
DYAD produces it by registering it in Flux’s key-value store service.
When a file in the consumer-managed directory is opened, DYAD
consumes it by fetching it from the node on which it is stored using
Flux and the DYAD server.

3 EVALUATING DYAD’S PERFORMANCE
Designing a testing performance suite. To evaluate the performance
of DYAD, we design a suite of mini-apps emulating real scientific
workflows. Our current suite includes a mini-app mimicking data
movement in molecular dynamics (MD) simulations. Specifically,
we design a plugin system that extends the Analyitcs4MD (A4MD)
workflow [5] to run as a mini-app on top of DYAD. By combin-
ing these mini-apps with performance measurement tools (e.g.,
Caliper and HPCToolkit), we enable the in-depth study of DYAD’s
performance.

Analysis of mini-app performance. To evaluate the efficiency of
DYAD, we test it with the mini-apps from our performance suite.
We compare DYAD with a sequential approach, which is commonly
used in scientific workflows. For this comparison, the success met-
ric is the time between the synchronized start and end of all tasks
in a mini-app. Figure 2 shows times from our A4MD mini-app for
different numbers of producer-consumer pairs and different file
sizes. The tests are executed on the Corona system at Lawrence
Livermore National Laboratory, which has 48 AMD Rome cores,
256 GB of memory, and 1.5 TB of NVRAM storage per node. For
each test, the producer-consumer pairs are distributed such that

each task (i.e., producer or consumer) has exclusive compute node
control. In each pair, the producer sends 64 fixed-size files to the
consumer. Before each send, the producer generates the file on-
the-fly using NumPy. As a result, the amount of work for a single
pair is fixed. Since we scale the number of pairs, this test evalu-
ates the performance of DYAD and the sequential approach under
weak scaling. When moving data with DYAD, data is temporarily
stored in the on-node NVRAM storage. When moving data with
the sequential approach, data is stored in Lustre.

In the figure, we observe that DYAD outperforms the sequential
approach for 185 byte, 1 MB, and 10 MB file sizes and small numbers
of producer-consumer pairs. Specifically, we observe that DYAD
runs up to 6 times faster than the sequential approach at these scales.
As we increase the number of pairs, we also observe that DYAD’s
performance begins to scale linearly, while the performance of the
sequential approach remains constant. Overall, DYAD outperforms
the sequential approach for small and medium file sizes. However,
it performs similarly to the sequential approach for larger files,
suggesting that further optimizations are needed to ensure efficient
scaling for large files. .

4 CONCLUSIONS
This poster presents DYAD, a middleware for efficient and easy-to-
use data file-sharing for scientific workflows based on the producer-
consumer paradigm onHPC systems.We show how ourmiddleware
can speed up small- and mid-scale producer-consumer workflows
up to six times compared to a sequential approach for moving data.
In future work, we will examine DYAD’s performance at larger
scales and for a broader set of applications.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-ABS-852835).

REFERENCES
[1] D.H. Ahn, J. Garlick, et al. 2014. Flux: A Next-Generation Resource Manage-

ment Framework for Large HPC Centers. In Proceedings of the 43rd International
Conference on Parallel Processing Workshops.

[2] C. Docan, M. Parashar, and S. Klasky. 2010. DataSpaces: An Interaction and
Coordination Framework for Coupled Simulation Workflows. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing.

[3] T. Peterka, D. Morozov, et al. 2023. LowFive: In Situ Data Transport for High-
Performance Workflows. In Proceedings of the 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS).

[4] P. Shamis, M.G. Venkata, et al. 2015. UCX: An Open Source Framework for HPC
Network APIs and Beyond. In Proceedings of the 23rd IEEE Annual Symposium on
High-Performance Interconnects.

[5] M. Taufer, S. Thomas, et al. 2019. Characterizing In Situ and In Transit Analytics
of Molecular Dynamics Simulations for Next-Generation Supercomputers. In
Proceedings of the 15th International Conference on eScience (eScience).

[6] J.S. Yeom, D.H. Ahn, et al. 2022. Ubique: A New Model for Untangling Inter-
task Data Dependence in Complex HPC Workflows. In Proceedings of the 18th
International Conference on e-Science (eScience).

	Abstract
	1 Introduction
	2 Designing the DYAD Middleware
	3 Evaluating DYAD's Performance
	4 Conclusions
	Acknowledgments
	References

