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Sensitivity of Black-Box Statistical Prediction of Lossy Compression Ratios for
3D Scientific Data

ALEXANDRA POULOS, Clemson University, USA
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Compression ratio estimation is an important optimization of I/O workflows processing terabytes of data. Applications such as
compression auto-tuning or lossy compressor selection require a high-throughput, accurate estimation. Prior works that utilize
sampling are fast but inaccurate, while approaches which do not use sampling are highly accurate but slow. Through sensitivity
analysis we show that sampling a small number of moderately sized data blocks maintains fast data transfer and yields superior
estimation accuracy compared to existing sampling approaches, and we use this to construct a new fast and accurate sampling method.
In relation to non-sampling techniques, our method results in less than 10% degradation in estimation accuracy, while still maintaining
the high throughput of the less accurate sampling methods.
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1 INTRODUCTION AND BACKGROUND

Scientific simulations are increasingly reliant on lossy compression, as output data is on the scale of terabytes. There
are many lossy compression algorithms, and the performance of a lossy compressor can vary greatly under different
circumstances. Fast and accurate compression ratio (CR) estimation is necessary for many use cases, such as compression
auto-tuning and fast compressor selection. Prior work has driven estimation techniques to be highly accurate at the
cost of performance, but some HPC applications are better optimized by high speed compression and can accept a
higher degree of error in estimation. Using data sampling to estimate CR yields up to a 3X improvement in throughput,
but existing sampling approaches are accurate less than 80% of the time. In this work, we conduct a sensitivity analysis
of block sampling techniques using data from three real-world scientific applications [6] and four state of the art lossy
compressors, and present a hybrid lightweight compressor-agnostic sampling method that bridges the gap between CR
estimation performance and accuracy.

2 METHODOLOGY

Sampling has been successful in the past, but it was very inaccurate. We develop a new method that leverages the
advantages of sampling while maintaining the accuracy of approaches which utilize the entire data buffer. We develop
the linear regression model shown in Equation 1 which uses the standard deviation and compression ratio of each
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Fig. 1. We use two grid-aligned sampling approaches: uniform and random block sampling.

sampled block, along with a locality metric which allows the model to incorporate spatial correlation between sampled
points. To assess the accuracy, we conduct a sensitivity analysis with respect to the sampling design.

We consider two grid-aligned block sampling approaches: uniform sampling and random sampling. Uniform sampling
allows for equal coverage of all areas in a data buffer with no bias. Random sampling does not treat all blocks of the
data buffer as equal, which leads to gaps in coverage in some areas and clusters of sampled blocks in others. This can be
seen in Figure 1. The block sampling method takes a 3D tensor and splits it into𝑀 ×𝑀 ×𝑀 3D blocks. The number of
block samples 𝑁 is varied from 16 to 128. The size of the blocks𝑀 is varied from 4 to 32.

log(CR) = 𝑎 + 𝑏 ×
∑︁

𝜎𝑖 × cr_local𝑖 + 𝑐 ×
∑︁

loc𝑖 × cr_local𝑖 + 𝑑 ×
∑︁

𝜎𝑖 × loc𝑖 × cr_local𝑖 , (1)

where loc𝑖 =

∑
𝑗 |𝑥𝑖𝑖 −𝑦𝑖 𝑗 |√∑
𝑗 (𝑥𝑖𝑖 −𝑦𝑖 𝑗 )∑

𝑗 |𝑥𝑖𝑖−𝑦𝑖 𝑗 |
.

We test our estimation model with data from three scientific applications from different domains and four state of
the art lossy compressors, fpzip, sz2, sz3, and zfp. Each lossy compressor is run with absolute error bounds of 1E-5,
1E-4, 1E-3, and 1E-2. All experiments are run on Clemson’s Palmetto cluster using a node with 40 core Intel(R) Xeon(R)
Gold 6148 CPU @ 2.40GHz and 372 GB of RAM. The OS is Linux CentOS 8 with compiler GCC 9.5.0.

3 RESULTS

3.1 Accuracy

To measure the accuracy of our model, we use the median absolute percentage error (MAPE) between the predicted CR
and the true CR. The MAPE is calculated as |𝐶𝑅𝑡𝑟𝑢𝑒−𝐶𝑅𝑝𝑟𝑒𝑑 |

𝐶𝑅𝑡𝑟𝑢𝑒
and offers a robust estimate of the accuracy of a model

as it is not affected by outliers such as extremely accurate or extremely inaccurate predictions. Each of the following
heatmaps shows the MAPE for different compressors with various configurations. As a measure of uncertainty, each
block is also annotated with the range between the 10% and 90% quantile of the estimation error.

We determined that the number of blocks sampled had little effect on the estimation accuracy. As shown in Figures 2
and 3, it is the size of the sampled blocks that has the biggest impact on the predicted CR accuracy. We also determine
that the sampling approach utilized does not appear to impact the CR estimation. Figure 2 shows the MAPE across
Manuscript submitted to ACM
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Fig. 2. Hurricane Isabel PRECIP field MAPE with uniform block sampling

Fig. 3. Hurricane Isabel PRECIP field MAPE with random block sampling

all lossy compressors using uniform block sampling on the Hurricane Isabel PRECIP field with a fixed error bound of
1𝑒 − 04, while Figure 3 shows those results for random block sampling. Additionally, the error bound does not seem to
affect prediction capability. This can be seen in Figure 4 which shows the prediction results of the SZ3 compressor on the
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Fig. 4. QMCPACK MAPE with the SZ3 compressor across all tested error bounds. The accuracy of our model is not impacted by the
lossy compressor error bound. Note that the dimensionality of this dataset (115 × 69 × 69) does not allow for testing of all block
configurations.

QMCPACK dataset across all error bounds. Table 1 shows the accuracy performance on the QMCPACK dataset across
all compressors and error bounds with a fixed block size of 16. Similar results were obtained for other compressors and
datasets.

Compressor MAPE 10% Quantile 90% Quantile
fpzip 1.35 1.04 1.64
sz2 14.5 12.6 17.1
sz3 7.65 6.31 8.94
zfp 3.87 3.10 4.90

Table 1. Prediction accuracy metrics for fpzip, sz2, sz3, and zfp’s CR estimation with a block size of 16. MAPE with 10% and 90%
quantiles are reported for the QMCPACK dataset.

3.2 Runtime Performance

CR estimation methods which utilize the entire dataset are significantly slower than sampling approaches. Because
our approach does not rely on the entire data buffer, our method is significantly faster than non-sampling approaches.
For that reason we compare our runtime performance to sampling methods. Figure 5 shows our timing performance
by compressor on the SCALE-LetKF dataset compared to the work in [3]. Our method is comparable in runtime
performance while offering superior prediction accuracy.

4 CONCLUSION AND FUTUREWORK

We present a lightweight estimation method which is flexible across compressors, error bounds, and datasets. Our
method only requires a small number of moderately sized samples from a data buffer in order to achieve a high
prediction accuracy while maintaining high data throughput. This work leads to the next step in advancing compression
auto-tuning and fast lossy compressor selection. Future work includes i) exploring the use of importance-based and
other sampling methods to improve model accuracy and ii) incorporating the use of mixture modeling to increase the
robustness of our CR estimation across datasets.
Manuscript submitted to ACM
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Fig. 5. Runtime of lossy compressors on the SCALE-LETKF rainfall simulation compared with the work from [3].
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