SC23 Proceedings

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Technical Papers Archive

Enhancing Adaptive Physics Refinement Simulations through the Addition of Realistic Red Blood Cell Counts


Authors: Sayan Roychowdhury, Samreen T. Mahmud, Aristotle Martin, Peter Balogh, and Daniel F. Puleri (Duke University); John Gounley (Oak Ridge National Laboratory (ORNL)); Erik W. Draeger (Lawrence Livermore National Laboratory); and Amanda Randles (Duke University)

Abstract: Simulations of cancer cell transport require accurately modeling mm-scale and longer trajectories through a circulatory system containing trillions of deformable red blood cells, whose intercellular interactions require submicron fidelity. Using a hybrid CPU-GPU approach, we extend the advanced physics refinement (APR) method to couple a finely-resolved region of explicitly-modeled red blood cells to a coarsely-resolved bulk fluid domain. We further develop algorithms that: capture the dynamics at the interface of differing viscosities, maintain hematocrit within the cell-filled volume, and move the finely-resolved region and encapsulated cells while tracking an individual cancer cell. Comparison to a fully-resolved fluid-structure interaction model is presented for validation. Finally, we use the advanced APR method to simulate cancer cell transport over a mm-scale distance while maintaining a local region of RBCs, using a fraction of the computational power required to run a fully-resolved model.




Back to Technical Papers Archive Listing