
Characterizing the Performance of the Implicit
Massively Parallel Particle-in-Cell iPIC3D Code

Jeremy J. Williams, Daniel Medeiros, Ivy B. Peng, and Stefano Markidis
Department of Computer Science, EECS, KTH Royal Institute of Technology

Stockholm, Sweden
jjwil,dadm,bopeng,markidis@kth.se

Abstract
Optimizing iPIC3D, an implicit Particle-in-Cell (PIC) code,
for large-scale 3D plasma simulations is crucial for space
and astrophysical applications. This work focuses on charac-
terizing iPIC3D’s communication efficiency through strate-
gic measures like optimal node placement, communication
and computation overlap, and load balancing. Profiling and
tracing tools are employed to analyze iPIC3D’s communica-
tion efficiency and provide practical recommendations. Im-
plementing optimized communication protocols addresses
the Geospace Environmental Modeling (GEM) magnetic re-
connection challenges in plasma physics with more precise
simulations. This approach captures the complexities of 3D
plasma simulations, particularly in magnetic reconnection,
advancing space and astrophysical research.

Keywords: iPIC3D, Magnetic Reconnection, Implicit PIC,
Space Weather, Performance Analysis, Profiling and Tracing
ACM Reference Format:
Jeremy J. Williams, Daniel Medeiros, Ivy B. Peng, and Stefano
Markidis. 2023. Characterizing the Performance of the Implicit
Massively Parallel Particle-in-Cell iPIC3D Code. In Proceedings
of ACM Conference (SC ’23). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Introduction. The iPIC3D code is widely used massively-
parallel Particle-in-Cell (PIC) for space simulations, partic-
ularly in magnetic reconnection studies. Magnetic recon-
nection is a phenomenon where magnetic field lines rup-
ture and rearrange in three-dimensional space, leading to a
restructuring of plasma’s magnetic topology. This process
converts magnetic energy into kinetic and thermal energy,
accelerating charged particles and generating intense energy
bursts [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SC ’23, Tuesday–Thursday, November 14–16, 2023, Denver, CO, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

As an implicit Particle-in-Cell (iPIC) code, iPIC3D is a pow-
erful tool for 3D plasma simulations, allowing for in-depth
space exploration of plasma dynamics and complex interac-
tions between electromagnetic fields and charged particles.
It provides valuable insights into the conversion activity of
magnetic energy (Figure 1) and the acceleration of charged
particles, shedding light on complex underlying processes
in iPIC3D Plasma Simulations [3].

Figure 1. Evolution of streamlinemagnetic fields inmagnetic
reconnection with iPIC3D.

This work aims to comprehensively analyze and enhance
the performance of iPIC3D by exploring metrics like execu-
tion time, memory usage, and computational efficiency in its
simulations. Advanced performance analysis tools, including
profilers and tracers [6], are employed to examine iPIC3D’s
performance characteristics, identify hotspots, and gain in-
sights into its behavior in plasma simulations. Optimizations
based on these findings seeks to improve iPIC3D’s effective-
ness and deepen our understanding of plasma dynamics.
Methodology & Experimental Setup. In this work, we
use perf as a profiler to collect hardware performance coun-
ters, focusing on cache and memory performance. We also
leverage CrayPAT and Apprentice2 for parallel data process-
ing visualization on Cray architectures [1]. We incorporate
Extrae and Paraver, from the Barcelona Supercomputing
Center (BSC), into our workflow for parallel performance
tracing and profiling [4]. Finally, we also display our ob-
tained results with Darshan, a performance monitoring tool
for analyzing serial and parallel I/O workloads [5].

In our experiments, we analyze iPIC3D on two systems: a
workstation (Greendog) with an i7-7820X processor (8 cores)
and Dardel, a HPE Cray EX supercomputer with 1270 nodes,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC ’23, Tuesday–Thursday, November 14–16, 2023, Denver, CO, USA Jeremy J. Williams, et al.

each equipped with 256GB DRAM and two AMD EPYC Zen2
2.25 GHz 64-core processors per node. Further details about
these systems are provided in the poster.
Results and Analysis. iPIC3D uses parallel processing
within a single node and inter-node communication for
larger-scale simulations across multiple nodes. This section
analyzes intra-node and inter-node activity of iPIC3D, focus-
ing on up to 32 nodes (4096 MPI Processes) and evaluating
its I/O performance.
We begin by assessing iPIC3D’s performance and mem-

ory system. We used perf on the Greendog workstation,
leveraging administrative privileges (without restrictions).
The impact of the iPIC3D cache size on load misses varies
with cache level and workload. Larger cache sizes result in
a reduction of L1 Ddcache load misses. For example, 50%
Increase Size (6 6 6 6) has 1.99% load misses, Baseline Size (4
4 4 4) has 2.22% load misses, and 50% Reduction Size (2 2 2
2) has 3.79% load misses. Similarly, for LLC load misses, 50%
Increase Size has 54.75%, Baseline Size has 58.03%, and 50%
Reduction Size has 47.95%.
Next, we employed Extrae and Paraver on Dardel to

analyze and trace iPIC3D’s communication pattern. This
analysis focused on 8 MPI ranks, with one simulation cycle
(ncycles = 1) and all other parameters fixed, providing clear
communication pattern results for a complete simulation
of iPIC3D. During the initial phase to around 50% of the
simulation, the iPIC3D MPI ranks remain stable. However,
ranks 1 to 7 experience a waiting period for rank 0, leading to
workload imbalance and impacting efficiency in each node.

We then analyze iPIC3D parallel performance on Dardel,
up to 32 nodes (4096 MPI ranks), using CrayPAT for instru-
mentation and Apprentice2 for visualizing and exploring
performance analysis data. This allows us to gain insights
into the performance characteristics of multiple simulations.
In the intra-node configuration (128MPI processes), iPIC3D’s
computational functions are predominantly utilized, account-
ing for approximately 74.84% of the execution time. On the
other hand, in the inter-node configuration (4096 MPI pro-
cesses), a higher proportion of MPI functions is observed,
due to increased inter-node communication demands. As
seen in Figure 2, increasing MPI processes in iPIC3D results
in higher communication time, reaching 86.90% with 4096
MPI processes, while computation time decreases to 13.10%
due to overhead. Distributing computation improves overall
execution time, but ideal linear scaling is not achieved, result-
ing in a slower execution due to communication overhead,
load imbalance, and scalability limitations.

Finally, using Darshan, we analyze I/O in iPIC3D plasma
simulations. The POSIX interface demonstrates higher band-
width with more MPI processes, indicating better parallel
performance. With 128 MPI processes, the POSIX interface
achieves an I/O bandwidth of 212.28 MiB/s, while STDIO
only manages 1.07 MiB/s. Increasing the number of MPI pro-
cesses to 4096, the POSIX interface delivers an impressive

Figure 2. iPIC3D’s strong scaling up to 4096 MPI processes.

I/O bandwidth of 4364.49 MiB/s, whereas STDIO lags behind
with only 8.27 MiB/s. These results highlight how iPIC3D’s
POSIX interface outperforms STDIO in I/O bandwidth, even
with higher parallelism. Utilizing POSIX can significantly
enhance I/O performance, especially in data transfer rates.
Conclusions and FutureWork. In this work, we identified
communication as a critical factor and bottleneck impacting
the performance in iPIC3D, particularly on large runs. Non-
blocking MPI communication functions are used to mitigate
this issue, however the presence of MPI_Waitall can hinder
execution and slow down progress. Additionally, file I/O
operations (POSIX and logging) contribute to performance
overhead.
To enhance communication efficiency in iPIC3D plasma

simulations, we propose several strategies. These include op-
timal node placement [7], communication and computation
overlap [2], and load balancing [8]. Additionally, we sug-
gest exploring alternative algorithms and data structures to
minimize overhead, drawing insights from further advanced
tooling techniques [6].

References
[1] Reuben Budiardja and et al. 2018. Using CAASCADE and CrayPAT for

analysis of HPC applications. Technical Report. Oak Ridge National
Lab.(ORNL), Oak Ridge, TN (United States).

[2] Vladimir Marjanović and et al. 2010. Overlapping communication and
computation by using a hybrid MPI/SMPSs approach. In Proceedings of
the 24th acm International Conference on Supercomputing. 5–16.

[3] Stefano Markidis and et al. 2010. Multi-scale simulations of plasma
with iPIC3D. Mathematics and Computers in Simulation 80, 7 (2010),
1509 – 1519. https://doi.org/10.1016/j.matcom.2009.08.038

[4] Harald Servat and et al. 2013. Framework for a productive performance
optimization. 39, 8 (2013), 336–353.

[5] Shane Snyder and et al. 2016. Modular HPC I/O characterization with
Darshan. In 2016 5th workshop on extreme-scale programming tools
(ESPT). IEEE, 9–17.

[6] Jeremy J Williams and et al. 2023. Leveraging HPC Profiling & Tracing
Tools to Understand the Performance of Particle-in-Cell Monte Carlo
Simulations. arXiv preprint arXiv:2306.16512 (2023).

[7] Mohamed Younis and et al. 2008. Strategies and techniques for node
placement in wireless sensor networks: A survey. Ad Hoc Networks 6, 4
(2008), 621–655.

[8] Qi Zhang and et al. 2005. Workload-aware load balancing for clustered
web servers. IEEE Transactions on Parallel and Distributed Systems 16, 3
(2005), 219–233.

https://doi.org/10.1016/j.matcom.2009.08.038

	Abstract
	References

