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Abstract—In climate modeling, it is impossible to perfectly
model the real world due to our incomplete understanding
of the highly complex climate system. However, by running
climate models multiple times with small variations in input
parameters or model configurations, it is possible to explore
the range of possible climate scenarios and estimate the un-
certainties associated with these. This is especially important
for investigating extreme climate events such as the response
to volcanic eruptions where these ensembles are used for impact
assessments and policy-making. However, generating ensembles
of high-resolution climate runs using these models requires a
significant amount of computational resources and time, which
can be especially crucial in the context of risk assessments and
decision makings. This dissertation addresses this challenge by
applying machine learning techniques to generate high-resolution
ensemble members of climate models. The procedure is divided
in two steps. The first addresses the generation of low resolution
ensemble runs using a generative adversarial network (GAN) in
comparison with a deep diffusion model (DDM). The second step
investigates downscaling of low resolution ensemble runs using
convolutional neural network (CNN) approach. Finally, the study
investigates the combination of the ensemble generation and
super-resolution approaches to generate high-resolution ensemble
runs. Since the overall goal is to provide time-efficient ways to
generate high-resolution ensemble members, this study further
implements different parallelization techniques to accelerate the
performance to a maximum and minimize computation time. This
study will allow further investigations into climate modeling that
were previously not possible due to time and resource constraints.

Index Terms—Machine Learning, Generative Deep Learning,

Parallelization, Machine Learning in Climate, Digital Twin, Earth
System Modeling

I. INTRODUCTION

The Earth’s climate is a complex system composed of
several interconnected parts [1]. Because there are many
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uncertainties in how these components interact and respond to
changes in greenhouse gas concentrations, aerosols, and other
factors, climate models are unable to perfectly simulate the real
climate system. Therefore, climate ensembles refer to a set of
climate model simulations that are used to provide a range of
possible outcomes. These are generated by running multiple
simulations of climate models using different initial conditions
and/or different model configurations. The goal of generating
ensembles is to capture the range of potential climate out-
comes, given the uncertainties in both our understanding of the
climate system and the potential impacts of human activities
on the climate. There are different methods for generating
climate ensembles, with the most common approaches being
a set of global climate models (GCMs) [2] or Earth System
Models (ESMs) [1] to simulate potential climate scenarios.
These models are based on a complex set of mathematical
equations that describe the physical, chemical, and biological
processes that govern the Earth’s climate system. To generate
an ensemble of simulations, small changes are made to the
initial conditions or model parameters in each simulation. For
example, varying the initial concentration of greenhouse gases,
the amount of solar radiation, or the ocean temperature in each
simulation. Alternatively, different versions of the same model,
or different models altogether, can be used.

Even though multiple climate model runs can be scaled
and parallelized given the right hardware, it remains a highly
computationally expensive and time consuming task. This can
limit the horizon of potential climate outcomes which is espe-
cially important for investigating extreme climate events like
the climate response to volcanic eruptions. Machine learning
approaches are known for their ability to create fast predictions
and generalize well on different applications. Specifically, gen-
erative machine learning approaches have proven to achieve
astonishing results in creative applications such as image or



text generation [3]-[6]. In a way, the generation of multiple
climate model runs can be seen as a creative task, where the
exact correctness is of less importance and more the range
of possible outcomes. Hence, we propose a state-of-the-art
generative machine learning approach that addresses the task
of simulating climate models in a creative manner.

II. OBJECTIVE AND METHODS

We frame our objective as a generative spatio-temporal
challenge. Beginning with n initial climate states, presented
as global monthly mean data grids, our aim is to produce
n sequences of monthly global grids. To enable the gener-
ation of arbitrarily lengthy sequences and to work around
hardware constraints, we adopt an iterative approach. In this
approach, the model forecasts the next state, which is then
utilized as input to predict the subsequent state. However, a
drawback of this approach is that errors introduced by the
model accumulate with each iteration, potentially leading to
significant deviations from accurate values. To address this
issue, we introduce a supporting climate member that spans
the entire time range to be forecasted and serves as a guiding
reference for the model. We introduce two generative deep
learning models to generate ensembles of climate simulations,
a conditional deep diffusion model [7] and a conditional
GAN [8]. In specific, this study investigates the Max Planck
Institute Earth System Model (MPI-ESM) LR [9], from which
the historical runs are used, consisting of a set of 200
calculated members, ranging from 1850-2005. This provides
a large set of global climate fields from different variables.
Independently from the generative models, a convolutional
neural network (CNN) is trained for down-scaling on low-
resolution data, using the HR version of the MPI-ESM. For
further performance acceleration, two distributed deep learning
techniques are implemented. In order to speed up the training
process, data parallelization splits the input training batch
across multiple GPU devices. For the forward pass during
training, the model is replicated on each device. Then, each
input split is separately forwarded on the devices. For the
backward pass, the gradients from the replicated model of each
device are summed. For model parallelization, the model is
distributed onto different GPUs such that each GPU calculates
the weight updates of at least one complete layer in the
model. This allows to train large scale models, that exceed
the graphical memory of a single GPU.

III. RESULTS

The training data comprised 99 ensemble members from
the MPI historical data set. One of these members was
selected as the support member, while the others served as
input for training. During training, a random point in time
was selected and the models were given the task to predict
the subsequent time step. For evaluation, the remaining 100
ensemble members were used. Here, the initial state of 99
members were used as the input to the model, while the
remaining was selected as support member. It took 12 hours
to train both models. The GAN produced member outputs
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Fig. 1. Field mean spread and mean of the original ensembles and the results
of the diffusion model (top row) and GAN (bottom row).

much more quickly, generating them in just a few seconds,
whereas the diffusion model required a span of two days.
In Figure 1, a comparison is presented between the spread
of the monthly mean temperature fields for all the generated
members and the original ones. The diffusion model (top
row) exhibits a slight low bias towards the end, while the
GAN demonstrates a highly robust spread and ensemble mean.
Both models are able to reconstruct the temperature decreases
after volcanic eruptions in 1883, 1902, 1963, 1982 and 1991.
However, when investigating climate events such as ENSO
cycles, the diffusion model was able to produce much more
realistic results. Furthermore, the diffusion model produced
consistent results within the whole generated time range,
whereas the results from the GAN model featured jumps
inbetween predicted time steps of the same member.

IV. CONCLUSION AND FUTURE WORK

We developed two generative machine learning approaches
that are able to create ensembles of climate simulations using a
single simulation as input. So far, the models are able to create



a realistic ensemble of low-resolution surface temperature
fields over a long time period (150+ years) at a monthly
temporal resolution. Furthermore, our super-resolution CNN is
able to produce good results for the task of down-scaling low-
resolution temperature fields to high-resolution temperature
fields on a global scale. The performance of combining these
two approaches still needs to be investigated. In future work,
we want to look at not only temperature fields but also
more dynamic climate variables such as precipitation, surface
pressure and wind.

ACKNOWLEDGMENT

Johannes Meuer was supported by the Vollmpact project
via the German Research Foundation (DFG, Funding No.
FOR2820).

REFERENCES

[1] N. Mabher, S. Milinski, L. Suarez-Gutierrez, M. Botzet, M. Dobrynin,
L. Kornblueh, J. Kroger, Y. Takano, R. Ghosh, C. Hedemann et al., “The
max planck institute grand ensemble: enabling the exploration of climate
system variability,” Journal of Advances in Modeling Earth Systems,
vol. 11, no. 7, pp. 2050-2069, 2019.

[2] M. Stute, A. Clement, and G. Lohmann, “Global climate models: Past,
present, and future,” Proceedings of the National Academy of Sciences,
vol. 98, no. 19, pp. 10529-10530, 2001.

[3] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,
I. Sutskever, and M. Chen, “Glide: Towards photorealistic image gen-
eration and editing with text-guided diffusion models,” arXiv preprint
arXiv:2112.10741, 2021.

[4] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” 2021.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

[6] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4401—
4410.

[7] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780-8794, 2021.

[8] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional gans,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 8798-8807.

[9]1 M. Giorgetta, J. Jungclaus, C. Reick, S. Legutke, V. Brovkin, T. Crueger,
M. Esch, K. Fieg, K. Glushak, V. Gayler et al., “Climate change from
1850 to 2100 in mpi-esm simulations for the coupled model intercom-
parison project 5, J. Adv. Model. Earth Syst., submitted, 2012.



