
system
configurationhwloc bandwidth,

latency

current CPU
 frequency
and power

I n t e g r a t i o n
Reflecting
dynamic
aspects

Application
(also manages the integration)

sys-sage: A Fresh View on Dynamic Topologies & Attributes of HPC Systems
Stepan Vanecek

stepan.vanecek@tum.de
TU Munich

Martin Schulz
schulzm@in.tum.de

TU Munich
sys-sage is a user-side library focussing on
collection, storage, and provision of arbitrary
HW-relevant information within an HPC system.

sys-sage provides the needed context between the
plethora of applications, tools, and benchmarks
providing some information describing the increasingly
complex modern HPC systems. It manages the context
for both static and dynamic data, which become
available at different stages of the application’s lifecycle.

Internal Architecture

sys-sage Library

internal representation

data source

default parsers

input parsers

custom
parsers

default data source

custom data
source

data-source-1

data-source-2

additional-info

parse-ds-1

parse-ds-2

parse-additional-info

parse-custom-
benchmark-1

custom-
benchmark-1

...

Application

Retrieving stored
information

sy
s-

sa
ge

 A
PI

upload
 data

upload
data

Modifying dynamic
information

-> component tree -> data-path graph

sys-sage API

core functionality

optional functionality

...

Node

CPU Socket

NUMA

Core

GPU

Memory

SMCache

Cache

Cache
partitioning

BW &
latency

Data
transfer
energy

Why use sys-sage?

- Integrating many tools with different APIs
- Connecting and correlating the data from
 many different backends not feasible
- Storing only specific provided data
- Usually only either static or dynamic information
- Forcing a deep integration of chosen tool(s)

➡ no flexibility or adaptability

+ No redundant backends integration
+ Automatically connecting and correlating

the information
+ Maintaining arbitrary data
+ Capturing both static and dynamic information
+ Offering unique and universal structure to

capture HW systems and their attributes

Try sys-sage out and get in touch with us!
https://github.com/caps-tum/sys-sage
stepan.vanecek@tum.de
spack install sys-sage

General areas of usage:
✓ Code tuning
✓ Performance monitoring & visualization
✓ Performance estimation
✓ Performance/system modelling & simulations
✓ Scheduling (node- / thread-based /…)
✓ Co-scheduling
✓ Power-management
✓ System design

Sample-based performance visualization

Providing data to sys-sage

What is sys-sage? Using sys-sage

Component Tree
➡ simple orientation

➡ captures hierarchy

DataPath Graph
➡ captures relations between

 particular components

➡ arbitrary connections

➡ non-hierarchical data

➡ highly flexible

{ { {Data generation
Data gathering Upload

Internal representation
& provision to tools

Application

sys-sage
single interface

system
configurationhwloc bandwidth,

latency

current CPU
 frequency
and power

How large blocks?
-> Fit into L3 cache

 hwloc
 total L3 size

Intel CAT
 available L3 fraction

What if L3 cache size
changes dynamically?

Fraction
available

to me

Full L3 cache

How to obtain L3 cache
size reflecting dynamic
system configuration?

sys-sage

sys-sage provides
the correlated result

Stencil code

Chair of Computer Architecture and Parallel Systems,

School of of Computation, Information and Technology

Technical University of Munich

Traditional approach sys-sage approach

Cache-aware algorithms on systems with
dynamically changing system properties

Visualization in MemAxes

Mitos
HW-related

code samples

hwloc
HW information

How to connect the HW-related Mitos
samples with the hwloc HW context?

sys-sage
contains the HW context to store

& present the Mitos samples

Modern HW features very
different architectures

sys-sage

Integration out-of-the-box

hwloc
CPU topology

mt4g
GPU topology

cccbench & others
Latency & bandwidth

(cache-core, NUMA)

variorum
power consumption &

capping

Intel CAT & NVidia MIG
Resource sharing/isolation

HPC network
custom benchmarks

CPU core
frequency

...many more are
coming

PAPI counters, CPU-GPU
data transfers, I/O
characteristics, ...

User-defined integration
ANY ADDITIONAL TOOL OR

INFORMATION CAN EASILY BE
INTEGRATED BY THE USER

user-app 1
custom benchmark

user-app 2
profiling output

user-app 3
system information

APPLICATION

retrieve
data from
sys-sage

store
data to

sys-sage

TRY	ME!

Data Parsers
(plugin integration)

hwloc
data source

power
variations
data source

user
benchmark
data source

hwloc .xml

power variations
benchmark

.csv

network comm
user benchmark

.csv

s y s t e m

resource
sharing

In
te

l C
AT

 A
PI

Data Sources
(generate data)

power
capping

va
rio

ru
m

 A
PI

system
metrics

collection

us
er

 m
et

ric
co

lle
ct

io
n

AP
I

N
Vi

di
a

M
IG

 A
PI

Application

API

sys-sage Library

internal
representation

Modifying
dynamic

information

Retrieving
stored

information

upload
 data

dynamic
runtime

information

3rd Party API

core functionality

optional functionality

startup configuration

runtime polling

included in sys-sage

user extensions

Internally built on two complementary structures

https://github.com/caps-tum/sys-sage
mailto:stepan.vanecek@tum.de

