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sys-sage is a user-side library focussing on 
collection, storage, and provision of arbitrary 
HW-relevant information within an HPC system.

sys-sage provides the needed context between the 
plethora of applications, tools, and benchmarks 
providing some information describing the increasingly 
complex modern HPC systems. It manages the context 
for both static and dynamic data, which become 
available at different stages of the application’s lifecycle.
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Why use sys-sage?

- Integrating many tools with different APIs
- Connecting and correlating the data from 
       many different backends not feasible
- Storing only specific provided data
- Usually only either static or dynamic information
- Forcing a deep integration of chosen tool(s) 

➡ no flexibility or adaptability

+ No redundant backends integration
+ Automatically connecting and correlating 

the information
+ Maintaining arbitrary data
+ Capturing both static and dynamic information
+ Offering unique and universal structure to 

capture HW systems and their attributes

Try sys-sage out and get in touch with us!
https://github.com/caps-tum/sys-sage
stepan.vanecek@tum.de
spack install sys-sage

General areas of usage:
✓ Code tuning
✓ Performance monitoring & visualization
✓ Performance estimation
✓ Performance/system modelling & simulations
✓ Scheduling (node- / thread-based /…)
✓ Co-scheduling
✓ Power-management
✓ System design

Sample-based performance visualization

Providing data to sys-sage

What is sys-sage? Using sys-sage

Component Tree 
➡ simple orientation

➡ captures hierarchy

DataPath Graph 
➡ captures relations between

     particular components

➡ arbitrary connections

➡ non-hierarchical data

➡ highly flexible
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Cache-aware algorithms on systems with 
dynamically changing system properties

Visualization in MemAxes
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Modern HW features very
different architectures 
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Integration out-of-the-box
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User-defined integration
ANY ADDITIONAL TOOL OR

INFORMATION CAN EASILY BE
INTEGRATED BY THE USER
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Internally built on two complementary structures

https://github.com/caps-tum/sys-sage
mailto:stepan.vanecek@tum.de

