
sys-sage: A Fresh View on Dynamic Topologies & Attributes of
HPC Systems

Stepan Vanecek
stepan.vanecek@tum.de

Technical University of Munich, Garching, Germany
Garching bei München, Germany

Martin Schulz
schulzm@in.tum.de

Technical University of Munich, Garching, Germany
Garching bei München, Germany

ABSTRACT
HPC systems are getting ever more powerful, but this comes at the
price of increasing system complexity. In order to use HPC systems
efficiently, one has to be aware of their architectural details, in
particular details of their hardware topology, which is increasingly
affected by dynamic runtime settings.

sys-sage is a novel approach providing an infrastructure for stor-
age, correlation, and provision of HW-related system information.
It uses information from various well-known sources as well as use-
case-specific solutions, and correlates the particular pieces together
to provide a full view of a system. The novelty of our approach lies
in the ability to capture dynamic environments as well as systems’
complexities, and in enabling greater flexibility in its usage.

sys-sage is publicly available, and can be used by many appli-
cations. It integrates widely used approaches, such as hwloc or
dynamic counter information, and offers user-integration of all
other user-specific data sources.

CCS CONCEPTS
•Computer systems organization→Architectures; •Comput-
ingmethodologies→Modeling and simulation; Parallel computing
methodologies.

KEYWORDS
HPC System Topology, Hardware Architecture, Heterogeneous
Computing, Performance Optimizations.
ACM Reference Format:
Stepan Vanecek and Martin Schulz. 2018. sys-sage: A Fresh View on Dy-
namic Topologies & Attributes of HPC Systems . In Proceedings of SC Re-
search Poster (SC ’23). ACM, New York, NY, USA, 3 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 MOTIVATION
Modern High-Performance Computing (HPC) architectures have
evolved into clusters of complex and heterogeneous multi-core
processing units. This design shift has led to increased architectural
complexity of both chip and node designs. The traditional static and
strictly hierarchical representation of such systems (as presented,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’23, November 14–16, 2023, Denver, CO
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

e.g., by hwloc [1]) does not provide sufficient information to fully
understand such systems anymore.

Due to this trend, being able to fully utilize the systems and hav-
ing an understanding of systems’ behavior has become a challenge.
Having a deep understanding of the architecture and properties of
the system, including its dynamic abilities as well as data transfer ca-
pabilities, is very important for efficient parallel application design,
performance tuning for a given system, performance management,
resource sharing, as well as scheduling and data allocation deci-
sions, to only name a few areas. As a consequence, there is a need
for a solution combining the strengths of the simple-to-interpret
hwloc data view with support of non-hierarchical and dynamic
data. This approach has to go beyond the static hwloc view and
extend it with a more dynamic view representing the system’s data
flow capabilities as well as its dynamic configuration abilities.

2 TARGET USAGE
A wide range of applications and use-cases need some kind of
information regarding a system’s topology, configuration, or ca-
pabilities. Current solutions only provide a specific subset of the
required information, especially considering the challenges posed
by modern systems. We aim to provide the necessary infrastructure
for supporting any use-case dealing with HW-related data.

The use-cases we address with our library span across many
different disciplines and areas of HPC. To list a few examples,
we consider tasks regarding scheduling nodes based on their mu-
tual connectivity (bandwidth/latency), scheduling threads based on
proximity (to each other, to a special memory, or to a GPU), or sched-
uling on power-efficiency vs. performance cores. We also address
the needs for resource-sharing tasks, i.e., how to split a component
(a node or a single CPU/GPU) and decide which resources to offer
to which application (e.g., allocate an application on a socket close
to a particular GPU). Additionally, we also target heterogeneous
and deep memory systems: in order to decide on which memory
type to allocate data, knowledge of bandwidth/latency, size, or con-
figuration for each option is required. Further, we need to consider
power-management use-cases that make decisions based on the
cost (in terms of power) of data transfers between particular com-
ponents. Finally, we also support advanced performance modeling
tools that simulate how a system would behave if it had different
characteristics (more/fewer cores, higher/lower bandwidth, etc.).

Different applications have widely different requirements re-
garding what information such a library should provide, i.e., what
system-relevant information they require and what is redundant.
We design a modular approach that decouples the core tasks to gain
flexibility for such a broad coverage. For this, we split the workflow
into three stages:

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SC ’23, November 14–16, 2023, Denver, CO Vanecek et al.

(1) Collecting the relevant information (from any suitable source),
(2) Maintaining the information – different kinds of information

(static/dynamic, qualitative/quantitative, variable/constant,
...), collected from multiple data sources, regarding different
components of the system – so that all the data forms one
logical structure, and

(3) Providing the information to the user or application in a
unified fashion.

There are many sources of system- and hardware-relevant data
being in use today — provided by applications, the OS or drivers,
or by executing specially tailored benchmarks measuring system
properties, to name just a few examples. sys-sage does not aim at
replacing them; it rather uses the information they provide and
simplifies and unifies the way the data from different sources is com-
bined, correlated, and offered to the user. Hence, our core capability
is to (2) maintain and (3) provide the information captured
by or via sys-sage, while its design allows us to (1) import any
relevant information from any existing source. This design enables
sys-sage to drastically simplify the procedure of integrating and
providing HW-relevant data to target applications.

3 INTERNAL DESIGN
Each tool using sys-sage defines the information to be uploaded to
and to be managed by the library. It is provided by already existing
tools and APIs. Once the data is present, the user, which can be an
application, a resource manager, a runtime system, or any other
program, can query the stored data. In addition, the user can add
or modify arbitrary attributes to reflect changes in the system state
or new information as it becomes available.

In sys-sage, the properties of an HPC system are represented in
the form of Components and Data Paths, which are interlinked with
each other, providing the correlation of the different information.

Components have a hierarchical tree structure, providing a con-
struct that is easy to understand for the user and is easy to navigate.
It forms the core of sys-sage, and all additional information (static or
dynamic) is connected to and referenced from it. Each Component
is of a particular Component Type — classes derived from different
parts of computer systems so that their specific attributes and func-
tionalities can be represented. Example Component Types are Node,
Storage, Memory, Chip, Cache, or Core.

Data Paths are a construct that carries information about the
relation of two arbitrary Components. Each Data Path has a source
and a target Component. Apart from that, no other rules apply — a
Data Path can store any information. It is up to the user to define
what information the Data Paths carry.

3.1 Importing Data to sys-sage
The information about hardware, which sys-sage handles, comes in
at different stages of an application life-cycle. Some data is already
available before launching the application, some can be queried at
the startup, while other information changes dynamically during
the runtime and hence needs to be polled repeatedly. The design of
sys-sage allows querying and storing all this information.

sys-sage imports the data already available before the launch
through so-called Data Sources, such as hwloc or benchmarks, that
provide the needed data. They are read by the so-called Input Parsers

and transferred to structures recognized by the library’s Internal
Representation. There are Default Input Parsers available for the
frequently-used Default Data Sources, which can be used out-of-
the-box. For other Data Sources, users can easily write their Custom
Input Parsers to upload them to sys-sage.

The information that is first available when the application is
started is stored in sys-sage and read through its API. This way, the
user of sys-sage can add, update, or delete any piece of information
stored in the library. sys-sage, therefore, also works as a hardware-
related information data storage for the application that uses it.

4 USE CASES
We integrate sys-sage into multiple scenarios to show its usability
as well as to improve the quality of said scenarios.

4.1 Cache-aware Algorithm vs. Dynamically
Changing Cache

Specific algorithms (such as stencil computations in our use-case)
can profit from ordering the operations so that a single piece of data
gets repeatedly reused while in cache. That is achieved by splitting
the domain into smaller pieces that fit in the (L3) cache.

However, modern hardware features software options to dynam-
ically restrict access to a fraction of the L3 cache for specific cores
or processes to enable fair resource sharing. This dynamic informa-
tion renders the static L3 size useless; knowing the fraction itself is
also insufficient. Only connecting these two pieces of information
together can result in correctly estimating the available L3 size.

sys-sage provides the correct value with minimal computational
and implementation overhead, enabling the application to keep
profiting from tiling even on systems with dynamically changing
L3 cache. Using our approach, we achieved a speedup of up to 2.05x
when restricting to 2/11 of L3 over the static tiling approach, adding
only ca. 10 lines of code.

4.2 Capturing Memory Access Data in sys-sage
PEBS memory access samples enable collection of detailed informa-
tion about sampled load operations, such as the load latency or the
cache level that served the particular request. This information is
collected by the Mitos [3] tool to be further analyzed and visualized
by the MemAxes [2] tool. The cache/memory information and the
issuing core information enable us to assign the samples to the
underlying hardware to allow analyses such as load imbalance.

Since modern hardware has gotten much more complex in the
last few years, MemAxes needs to be adapted to reflect the archi-
tectural specifics of the new hardware, which is now much more
diverse. This is now possible by integrating sys-sage as a back-
end for storing the HW-related samples. This way, any hardware
configuration can be presented and adequately displayed with the
respective samples. Moreover, after switching to sys-sage, we could
open MemAxes to other inputs, such as AMD’s IBS samples or
simulator-based traces. Hence, sys-sage enables larger flexibility in
the analyzed HW as well as the input data format while taking the
data management burden off from end tools, like MemAxes.

sys-sage: A Fresh View on Dynamic Topologies & Attributes of HPC Systems SC ’23, November 14–16, 2023, Denver, CO

REFERENCES
[1] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,

Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
hwloc: A generic framework for managing hardware affinities in HPC applications.
In 2010 18th Euromicro Conference on Parallel, Distributed and Network-based
Processing. IEEE, 180–186.

[2] Alfredo Giménez, Todd Gamblin, Ilir Jusufi, Abhinav Bhatele, Martin Schulz, Peer-
Timo Bremer, and Bernd Hamann. 2017. Memaxes: Visualization and analytics

for characterizing complex memory performance behaviors. IEEE transactions on
visualization and computer graphics 24, 7 (2017), 2180–2193.

[3] Alfredo Giménez, Benafsh Husain, David Böhme, Todd Gamblin, and Martin
Schulz. 2015. Mitos: A Simple Interface for Complex Hardware Sampling and
Attribution.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Motivation
	2 Target Usage
	3 Internal Design
	3.1 Importing Data to sys-sage

	4 Use Cases
	4.1 Cache-aware Algorithm vs. Dynamically Changing Cache
	4.2 Capturing Memory Access Data in sys-sage

	References

