
• The P1 level is basic optimization, with the goal of balancing the load and minimizing memory access.

• The P2 level represents an advanced phase of optimization efforts including optimizing scheduling,

block size, selection, and both static and dynamic scheduling.

• The P3 level represents the most challenging optimization strategy, including tiling techniques,

vectorization and sometimes requiring manual modifications to the code.

The experimental results are consistent with our expectations. As we delve deeper into optimizations,

performance continues to improve progressively.

Contact Us

NeoRodinia: Evaluation of High-Level Parallel Programming Models and Compiler Transformation for GPU Offloading

NeoRodinia is an extensive benchmark suite that evolved from the Rodinia

benchmark suite, encompassing 23 real-world applications and 5 microbenchmarks.

It addresses the limitations of Rodinia by optimizing OpenMP GPU offloading

programs and introducing OpenACC variants.

The main contributions of NeoRodinia include:

• Added missing OpenMP offloading programs and optimized existing ones.

• Added the OpenACC variants.

• The evaluation including performance assessments on various programming

models using various compilers, measuring execution time and memory usage.

• These evaluations offer valuable insights into parallel programming models and

compiler selection.

• NeoRodinia can be used to guide optimization efforts and help developers,

especially beginners to make informed decisions.

We also introduced a 3-tier optimization model, each tier with specific objectives

and methods, demonstrated using microbenchmarks. This model not only aims to

guide performance programming but also to standardize and improve traceability in

optimization processes.

Xinyao Yi, Anjia Wang, Yonghong Yan
Department of Computer Science | UNC Charlotte | https://passlab.github.io

Rodinia Benchmark Suite
The Rodinia benchmark suite includes 23 diverse applications and kernels for multi-

core CPU and GPU platforms. It covers fields like medical image processing,

bioinformatics, and fluid dynamics, implemented in parallel languages like CUDA,

OpenCL, and OpenMP. This suite is valuable for evaluating hardware efficiency and

testing compilers that support heterogeneous architectures. Several studies have used

the Rodinia benchmark suite for performance evaluations.

Issues in Rodinia
• OpenMP variant

- most programs only have CPU versions

- existing GPU versions are not optimized

• OpenACC variant

- no official version

- the existing unofficial version barely works

• Lack of compiler support evaluation

- Varied performance across different compilers

- potentially causing unpredictable behavior

Objectives
• Optimize and expand Rodinia

- the missing OpenMP Offloading version

- the OpenACC GPU Offloading version

• Serve as a platform for evaluating various compilers

• Provide educational resources

- showcases optimization processes and various techniques

- added five user-friendly microbenchmarks

Applications Dwarves Domains CUDA OpenMP-CPU OpenMP-GPUOpenACC

Leukocyte Structured Grid Medical Imaging Existed in Rodinia Existed in Rodinia New Added New Added
Heart Wall Structured Grid Medical Imaging Existed in Rodinia Existed in Rodinia New Added New Added
MUMmerGPU Graph Traversal Bioinformatics Existed in Rodinia Existed in Rodinia New Added New Added
CFD Soiver Unstructured Grid Fluid Dynamics Existed in Rodinia Existed in Rodinia New Added New Added
LU Decomposition Dense Linear Algebra Linear Algebra Existed in Rodinia Existed in Rodinia New Added New Added
HotSpot Structured Grid Physics Simulation Existed in Rodinia Existed in Rodinia New Added New Added
Back Propagation Unstructured Grid Pattern Recognition Existed in Rodinia Existed in Rodinia New Added New Added
Needleman-Wunsch Dynamic Programming Bioinformatics Existed in Rodinia Existed in Rodinia New Added New Added
Kmeans Dense Linear Algebra Data Mining Existed in Rodinia Existed in Rodinia New Added New Added
Bradth-First Search Graph Traversal Graph Algorithms Existed in Rodinia Existed in Rodinia New Added New Added
SRAD Structured Grid Ilmage Processing Existed in Rodinia Existed in Rodinia New Added New Added
Streamcluster Dense Linear Algebra Data Mining Existed in Rodinia Existed in Rodinia New Added New Added
Particle Filter Structured Grid Medical lmaging Existed in Rodinia Existed in Rodinia New Added New Added
PathFinder Dynamic Programming Grid Traversal Existed in Rodinia Existed in Rodinia New Added New Added
Gaussian Elimination Dense Linear Algebra Linear Algebra Existed in Rodinia New Added New Added New Added
k-Nearest Neighbors Dense Linear Algebra Data Mining Existed in Rodinia Existed in Rodinia New Added New Added
LavaMD N-Body Molecular Dynamics Existed in Rodinia Existed in Rodinia New Added New Added
Myocyte Structured Grid Biological Simulation Existed in Rodinia Existed in Rodinia New Added New Added
B+ Tree Graph Traversal Search Existed in Rodinia Existed in Rodinia New Added New Added

GPUDWT Spectral Method
Ilmage/Video
Compression Existed in Rodinia New Added New Added New Added

Hybrid Sort Soring Sorting Algorithms Existed in Rodinia New Added New Added New Added
Hotspot3D Structured Grid Physics Simulation Existed in Rodinia Existed in Rodinia New Added New Added
Huffman Finite State Machine Lossless data compressiol Existed in Rodinia New Added New Added New Added
AXPY Dense Linear Algebra Linear Algebra New Added New Added New Added New Added
Mat-Vec Mul Dense Linear Algebra Linear Algebra New Added New Added New Added New Added
Mat-Mat Mul Dense Linear Algebra Linear Algebra New Added New Added New Added New Added
Sum Dense Linear Algebra Linear Algebra New Added New Added New Added New Added
Stencil Dense Linear Algebra Linear Algebra New Added New Added New Added New Added

E-mails:
Xinyao Yi xyi2@uncc.edu Anjia Wang awang15@uncc.edu
Yonghong Yan yyan7@uncc.edu

HPCAS Lab:
Computer Science Department
University of North Carolina at Charlotte, Charlotte, NC, USA

Introduction

Background & Motivation

Che S, Sheaffer J W, Boyer M, et al. A characterization of

the Rodinia benchmark suite with comparison to

contemporary CMP workloads[C]//IEEE International

Symposium on Workload Characterization (IISWC'10). IEEE,
2010: 1-11.

Benchmark Summary

Code Optimization Example

Using function center_is_stable to avoid

redundant calculations and achieve data reuse.

Atomic directive can combine several

hardware instructions into one instruction to

execute, thus avoiding the calculation of

many intermediate results.

Stream Cluster - OpenMP
Matrix-Vector Multiplication

Basic Version

Optimization - Scheduling

Optimization - Vectorization

Preliminary Results

Use the specific OpenACC directives instead of directly using

the simpler kernel directive. The directives we use basically

achieve the same functions as using OpenMP.

Stream Cluster - OpenACC

The experimental results presented compare three versions of OpenMP: an initial version without optimization, a version using conditional statements to

enable data reuse, and a version utilizing atomic directives instead of critical directives. The results demonstrate that data multiplexing significantly reduces

the time required for data transmission, while the use of atomic directives leads to a reduction in computing time.

Kernel execution times of stream cluster (compiled by LLVM, input size: 64k.)

(a) computation time (b) time for data transfer from host to device (c) time for data transfer from device to host (d) total execution time

(a) total execution time for LLVM, NVCC and

NVC compilers

(b) total execution time for gcc compiler (c) computation time (d) time for data transfer from device to host

This figure presents a comparison of different models and compilers. The results indicate that the CUDA version achieves the highest calculation

efficiency, but incurs significant data transmission overhead. The OpenMP offloading version compiled with nvc delivers the best overall performance.

Another interesting finding is we basically achieve the same functions in OpenACC with OpenMP, but due to the limitations of OpenACC compiler and

runtime support, we cannot achieve the same performance as using OpenMP, which also reflects one of the important functions of benchmarks.

3-Tier Optimization Model

5120*5120 10240*10240 20480*20480

P1-Basic 12.00 43.60 147.20

P2-Optimized 11.20 36.50 135.60

P3 - Advangced 4.50 16.79 50.50

12.00

43.60

147.20

11.20

36.50

135.60

4.50

16.79

50.50

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Ti
m

e(
m

s)

Problem Size

P1-Basic P2-Optimized P3 - Advangced

We have introduced an optimization model with three tiers,

denoted as P1, P2, and P3, where 'P' stands for parallel. Each

tier is distinguished by its specific optimization objectives and

methodologies. We use five microbenchmarks to showcase

this model. The primary aim of designing this model is to

provide programmers, particularly beginners, with an

understanding of how the optimization process unfolds.

Additionally, we aim to standardize some optimization steps,

enabling a more structured and traceable optimization

procedure.

Kernel execution times of Stream Cluster across various programming models and compilers

https://passlab.github.io/yanyh/
mailto:xyi2@uncc.edu
mailto:awang15@uncc.edu
mailto:yyan7@uncc.edu

	幻灯片 1

