NeoRodinia: Evaluation of High-Level Parallel Programming
Models and Compiler Transformation for GPU Offloading

Xinyao Yi Anjia Wang Yonghong Yan
xyi2@uncc.edu awangl5@uncc.edu yyan7@uncc.edu
University of North Carolina at University of North Carolina at University of North Carolina at
Charlotte Charlotte Charlotte
Charlotte, North Carolina, USA Charlotte, North Carolina, USA Charlotte, North Carolina, USA

ABSTRACT

NeoRodinia is a comprehensive benchmark suite developed from
Rodinia, containing 23 real-world applications and 5 microbench-
marks. It addresses the limitations of Rodinia by optimizing OpenMP
GPU offloading programs and introducing OpenACC variants. The
evaluation involves thorough performance assessments on various
hardware architectures and compilers, measuring execution time
and memory usage. These evaluations offer valuable insights into
parallel programming models and compiler selection, guiding op-
timization efforts and helping developers, especially beginners to
make informed decisions.

KEYWORDS

GPU, benchmarks, OpenMP, OpenACC, CUDA, evaluation, com-
piler

1 INTRODUCTION

Systems equipped with GPU accelerators feature complex het-
erogeneous and deep memory systems, necessitating proficient and
accurate utilization by programmers to fully utilize the GPU’s par-
allel capabilities. Parallel programming models, such as OpenMP,
OpenACC and CUDA provide different styles and parallelism pat-
terns of APIs to help users achieve efficient and portable parallel
programming, yet challenges such as load imbalance and high com-
munication delay are still prominent in applications. Additionally,
compiler support also exhibits significant variation in terms of
execution efficiency.

Benchmarks play an important role in parallel computing, of-
fering examples to help users understand complexities, guide per-
formance optimization, and evaluate heterogeneous systems and
compiler effectiveness. NeoRodinia includes Rodinia’s original 23
CUDA benchmarks and 5 additional microbenchmarks. We have
developed corresponding optimized OpenMP Offloading and Ope-
nACC Offloading versions for each benchmark. We also evaluated
the performance of various parallel models and compilers, aiming
to offer valuable insights into optimization and compiler selection.

We also introduced a 3-tier optimization model labeled P1, P2,
and P3 (P for parallel), each with specific objectives and methods,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC’23, Nov 12-17, 2023, Denver, CO, USA

© 2023 Association for Computing Machinery.

demonstrated using microbenchmarks. P1 is the basic optimization
that aims to balance the load and reduce memory access. P2 refers
to advanced optimization including scheduling, block size, and
dynamic/static optimizations. The P3 level represents the most
challenging optimization strategies that involve tiling, vectorization,
and manual code optimizations.

2 BACKGROUND AND MOTIVATION
2.1 Rodinia Benchmark Suite

The Rodinia benchmark suite includes 23 real-world applications
and kernels for multi-core CPU and GPU platforms, covering vari-
ous domains, and is implemented in parallel languages like CUDA,
OpenCL, and OpenMP. Several studies evaluated Rodinia’s perfor-
mance across various platforms and have expanded it to support
new features within programming models. Che et al. character-
ized Rodinia’s performance on NVIDIA GeForce GTX480 [1]. Misra
et al. evaluated Rodinia kernels "LUD" and "HotSpot" on Intel’s
x86-based Xeon Phi [2]. And Svedin et al. benchmarked the A100
GPU, comparing it to four previous GPU generations to quantify
performance expectations [3].

2.2 Motivation

There are some limitations to Rodinia although it is popular.
For instance, the OpenMP variant mostly offers CPU versions of
programs, lacking optimized GPU versions. There is no official
OpenACC variant and the existing unofficial versions barely work.
Moreover, it lacks the evaluation of using different compilers. The
varying compiler support can lead to inconsistent performance
results, also sometimes introducing unpredictability errors.

To address the limitations, we proposed three objectives for
developing NeoRodinia: optimizing and expanding Rodinia with
OpenMP and OpenACC offloading benchmarks, serving as a plat-
form for compiler evaluation, and providing valuable educational
resources for developers, including five user-friendly microbench-
marks.

Meanwhile, we observed a lack of standardized optimization
guidance, resulting in many optimization processes relying on de-
velopers’ experience. Therefore, we introduced the 3-tier model not
only to guide performance programming but also to standardize
and improve traceability in optimization processes.

3 PRELIMINARY RESULTS

NeoRodinia consists of 23 real-world applications from Rodinia,
along with 5 newly added microbenchmarks which are summarized
in the table 1.

SC’23, Nov 12-17, 2023, Denver, CO, USA

Applications CUDA OMP-CPU OMP-GPU OpenACC
Leukocyte Existed Existed Added Added
Heart Wall Existed Existed Added Added
MUMmerGPU Existed Existed Added Added
CFD Solver Existed Existed Added Added
LU Decomposition Existed Existed Added Added
HotSpot Existed Existed Added Added
Back Propagation Existed Existed Added Added
Needleman-Wunsch Existed Existed Added Added
Kmeans Existed Existed Added Added
Breadth- First Search Existed Existed Added Added
SRAD Existed Existed Added Added
Streamcluster Existed Existed Added Added
Particle Filter Existed Existed Added Added
PathFinder Existed Existed Added Added
Gaussian Elimination Existed Added Added Added
k-Nearest Neighbors Existed Existed Added Added
LavaMD Existed Existed Added Added
Myocyte Existed | Existed Added Added
B+ Tree Existed Existed Added Added
GPUDWT Existed Added Added Added
Hybrid Sort Existed | Added Added Added
Hotspot3D Existed Existed Added Added
Huffman Existed Added Added Added
AXPY Added Added Added Added
MatVec Mul Added Added Added Added
MatMat Mul Added Added Added Added
Sum Added Added Added Added
stencil Added Added Added Added

Table 1: Applications in NeoRodinia

3.1 Optimization for Stream Cluster

3.1.1 OpenMP Offloading Version. Stream cluster calculates point
membership based on weight and distance to batch points. In the
kernel, data transfers are frequent except for point coordinates,
which are copied only if they change. Fig. 1 displays the optimized
code. The optimization includes a function center_is_stable()
on line 4 to check for changed input coordinates before data trans-
fers. The critical directive is replaced with the more efficient
atomic directive on line 14.

#pragma omp target data map(alloc:d_coord[@: chunksize * dim])

// only if necessary
#pragma omp target update to(d_coord[@:numxdim]) while(!center_is_stable()){
#pragma omp target teams distribute parallel for
map (to:d_points [@:chunksize], center_table [@: chunksizel)
map(tofrom: switch_membership [@: chunksize], lower[@:stride * (nproc+1)])
num_teams (1024) num_threads(512) reduction(+:cost_of_opening_x)
for (int i = @; i < num_points; i++) {
. // compute distance between points
if (x_cost < current_cost) {
} else {
int assign = d_points[i].assign;
#pragma omp atomic //The original version uses critical directive
lower[center_table[assign]] += current_cost - x_cost;

Yoo 33

Figure 1: Optimized OpenMP GPU Version of Stream Cluster

3.1.2 OpenACC Version. We use specific OpenACC directives in-
stead of directly use kernel directive to address limitations in
the compiler and runtime support. The directives we use basically
achieve the same functions as using OpenMP, but due to the limita-
tions of the OpenACC compiler and runtime support, we cannot
achieve the same performance as using OpenMP.

3.1.3 Experimental Results. The experimental results presented in
Fig. 2 compare three versions of OpenMP: an initial version with-
out optimization, a version using center_is_stable() to enable
data reuse, and a version utilizing atomic directive. The results
demonstrate that data multiplexing significantly reduces the data
transmission time, while atomic directives lead to a reduction in
intermediate results computation.

Fig. 3 presents a comparison of different models and compilers.
The results indicate that the CUDA version achieves the highest

X.Yietal.

Total Excution Time

80000

B 70000
T 60000
E 50000
= 40000
8 30000
s 20000
2 10000
- 0
Computati Data Transfer Data Transfer
omputation HtoD DtoH

Data-Reuse-Atomic 720 600 20

W Data-Reuse-Critical 35130 970 20

W No-Data-Reuse-Critical 35190 38630 20

M No-Data-Reuse-Critical Data-Reuse-Critical Data-Reuse-Atomic

Figure 2: Kernel execution time of stream cluster. It’s compiled by
LLVM. The number of input points is 64k.

Excution Time(ms)

Excution Time(ms)

(@) (b)

Figure 3: Kernel execution time of stream cluster using different
parallel models and compilers, a) total execution time for LLVM,
NVCC and NVC compilers, b) total execution time for gcc compiler.
OMP-CPU version is compiled by LLVM using 40 cores. For all GPU
versions, the number of teams and threads is specified to make each
thread only handle one loop iteration. The number of input points
is 64k.

calculation efficiency, but incurs significant data transmission over-
head. The OpenMP offloading version compiled with nvc delivers
the best overall performance.

3.2 3-Tier Model

We use matrix-vector multiplication to demonstrate our 3-tier
optimization model. In the P1 level, we leveraged the parallel for
directive and data-sharing clauses private and shared to manage
threads and minimize memory access. Moving on to the P2 level, we
employed the schedule(static, 64) clause to implement static
thread scheduling. At the P3 level, we achieved vectorization. Our
experimental results for an input size of 10240*10240 demonstrated
execution times of 43.6ms, 36.5ms, and 16.79ms for the three re-
spective levels. These results closely align with our expectations: as
we delve deeper into these optimization strategies, we consistently
observe a progressive improvement in system performance.

REFERENCES

[1] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn, Liang Wang,
and Kevin Skadron. 2010. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. In IEEE International Symposium
on Workload Characterization (ISWC’10). IEEE, 1-11.

Goldi Misra, Nisha Kurkure, Abhishek Das, Manjunatha Valmiki, Shweta Das,
and Abhinav Gupta. 2013. Evaluation of rodinia codes on intel xeon phi. In 2013
4th international conference on intelligent systems, modelling and simulation. IEEE,
415-419.

Martin Svedin, Steven WD Chien, Gibson Chikafa, Niclas Jansson, and Artur
Podobas. 2021. Benchmarking the nvidia gpu lineage: From early k80 to modern
a100 with asynchronous memory transfers. In Proceedings of the 11th International
Symposium on Highly Efficient Accelerators and Reconfigurable Technologies. 1-6.

N,

=

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Rodinia Benchmark Suite
	2.2 Motivation

	3 Preliminary Results
	3.1 Optimization for Stream Cluster
	3.2 3-Tier Model

	References

