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One-Dimensional Quantum Convolution 

The general convolution operation can be broken down into the 

following basic operations. 

 

Shift:  

• Generates shifted (unity strided) replicas of the input data 

• Uses additional “filter” qubits and controlled quantum decrementors 

Multiply-and-accumulate:  

• Filter operation is applied to all data replicas 

in parallel. 

• For filters of                    terms, filter is 

composed of      coupled filters (row vectors) 

with              degrees of freedom. 

• Define a specific filter using inverse arbitrary state synthesis and 

classical-to-quantum (C2Q) encoding 

 

Data Rearrangement:  

• Groups fragmented data into one contiguous output data 

• Uses quantum permutations (SWAP gates) 

1-D Quantum Convolution Circuit 

Multi-Dimensional Quantum Convolution 

• With multidimensional data, shift and data rearrangement operations can 

be “stacked” and performed in parallel. 

• Figure reverses multiply-and-accumulate and data rearrangement steps 

with an identity for visual clarity. 

• Using a pyramidal cascade of quantum decrementors instead of 

multiplexed quantum decrementors reduces number of  

           operations from                                 to     . 

• Overall, the circuit depth complexity is                                  , 

where            qubits represent the largest data dimension and             

qubits represent the corresponding filter dimension. 

Multi-Dimensional Quantum Convolution Circuit 

Simulation of Quantum Convolution on (512×512×3) Images 

Original Image (3×3) Sobel-X (3×3) Sobel-Y 

Quantum 

Decrementor by k 
 
 
 
 

Related Work 

Quantum Convolutional Neural Networks (QCNNs) [1] 

• Structure inspired by CNNs, with “convolutional,” “pooling,” and  

“fully-connected” layers. 

• “Convolution” layers based on locality of logical virtual qubits. 

• No emphasis on data locality or the convolution operation.  

 

Quanvolutional Neural Networks [5] 

• Leverages classical preprocessing to divide multidimensional input data 

into data-local windows. 

• Forgoes significant quantum advantage from parallel processing. 

• Introduces significant overhead from preprocessing and large number of 

quantum circuit iterations. 

• Classical-to-quantum (C2Q) data encoding and quantum-to-classical 

(Q2C) data decoding are slow operations. 

• Inherently a hybrid technique intended to accelerate CNNs, not for 

independent QML. 

Introduction and Motivation 

• Classical convolutional neural networks (CNNs) are effective at exploiting data 

locality in machine learning applications such as image classification. 

• Preserving data locality allows CNN models to reduce the number of training 

parameters, and hence their training time, while achieving high classification 

accuracy. 

• Existing quantum machine learning (QML) methods don’t effectively leverage 

data locality in multidimensional features. 

• We propose a variational quantum classification technique which facilitates: 

• Multidimensional quantum convolution while preserving data locality. 

• Quantum pooling based on quantum Haar transform (QHT). 

• We experimentally demonstrate the advantage of our method in comparison to 

existing classical and quantum techniques for image classification in staple 

multidimensional datasets using state-of-the-art quantum simulations.  

Background 

Fundamentals of Quantum Computing 

• Quantum computers leverage superposition and entanglement of 

quantum states for advantage over classical computers in certain 

workloads. 

• Near-term noisy-intermediate-scale-quantum (NISQ) hardware 

possesses strict decoherence constraints where quantum states break 

down after a certain amount of time. 

• Representation of an n-qubit quantum statevector: 

• Quantum operations act on quantum states and can be represented as 

unitary matrices or quantum “gates”. 

• All quantum gates can be decomposed into fundamental single-qubit 

rotation and two-qubit CNOT gates. 

• Quantum circuits must optimize circuit depth and gate count due to 

decoherence and gate errors. 

 

Amplitude Encoding via Arbitrary State Synthesis 

• Data values can be encoded into the probability amplitudes of the 

statevector, with the basis state representing positional information. 

• Data must be normalized to generate a valid statevector. 

• Multidimensional data can be mapped to the 1-D statevector using 

column-major ordering. 

• If the size of a dimension is not a power of 2, it must be padded with 

zeroes to the next largest power of 2. 

• An arbitrary state synthesis operation, e.g., classical-to-quantum (C2Q), 

can be used for data encoding from the ground state. 

 

Quantum Machine Learning with Variational Algorithms 

• Quantum optimization is not feasible due to decoherence constraints. 

• Current state of the art is quantum-classical hybrid algorithms, such as 

variational algorithms. 

• Static circuit gate layout is parameterized by rotation gates. 

• Circuit parameters are trained with classical optimization methods, 

e.g., gradient descent. 

Multidimensional Quantum Convolutional Classifier 

• Like a classical CNN, the multidimensional quantum convolutional 

classifier (MQCC) has     layers and a fully-connected layer. 

 

• Each layer made of a trainable 

quantum convolution operation 

and a quantum pooling 

operation. 

• Note that RoR permutations 

are shown in the figure for 

visual clarity, but do not actually 

contribute to circuit depth. 

• Fully connected layer is a 

pyramidal cascade of 

multiplexed rotation (Ry) rotation 

gates that condense quantum 

state to a single qubit — like 

pooling layers in QCNN [1]. 

 

 

• To adapt the filter operation        for QML, we replaced the inverse 

arbitrary state synthesis operation with a parameterized ansatz. 

• Implementing       using inverse arbitrary state synthesis is necessary to 

implement a pre-defined arbitrary filter, but trainable filters have more 

flexibility. 

• Above parameterized ansatz offers: 

• High parameter density: 

• Low circuit depth complexity:    

• High qubit entanglement from the ring of CNOT gates 

Width-Optimized MQCC 

• Each layer of quantum convolution introduces       additional qubits. 

• Over multiple convolution layers, MQCC accumulates a relatively large 

circuit width of                     . 

• To conserve circuit width and eliminate the filter qubits, the pooling layers 

can be placed before their corresponding convolution layers. 

• The qubits used to represent high-frequency terms can be used in-place 

of adding additional qubits. 

• Since high-frequency qubits do not start at their ground state, the width 

optimization introduces some error to the MQCC structure. 

• An additional trainable convolution filter is added after the first pooling 

operation to correct for error. 

• Since the filter qubits are eliminated, marginal circuit depth conservation 

is seen from the fully-connected layer. 

• Accuracy: MQCC (Optimized) shows the highest accuracy for the FashionMNIST 

dataset, while CNN outperforms all other models for CIFAR10 dataset. However, 

CNNs exhibit high accuracy variance (high maximum, low minimum) owing to its 

model complexity (number of parameters). Furthermore, Quanvolution performs 

relatively better than other models for MNIST dataset.  
 

• Training Time and Testing Time: The classical and the hybrid model require 

lower time for training and testing compared to the quantum models. The 

implementation of MQCC is challenging for larger images and requires  

comparatively more time. However, MQCC (Optimized) requires less time 

compared to QCNN (Corrected).  
 

• Gate Count: From our basic gate decomposition analysis, both MQCC models 

have lower gate counts regardless of the data size. 
 

• Circuit Depth: Both MQCC models offer lower circuit depth for smaller datasets compared to 

QCNN. 
 

• Number of Parameters: MQCC (Optimized) requires the lowest number of training parameters. 

Overall, the quantum convolution models require fewer training parameters compared to the 

classical and hybrid model. 
 

• Training Log-Loss: 

• Both MQCC models show consistent behavior towards the log-loss measure as the number 

of iterations increases. 

• Classical and Quanvolution require a relatively higher number of training iterations for 

reaching a “saturation” point. 

• Classical and Quanvolution exhibit minimal loss for simple datasets, i.e., MNIST, 

   which does not necessarily result in achieving higher accuracy. Such behavior suggests the 

   model is overfitting to training data. 

Conclusion and Future Work 

 

Quantum Pooling via Quantum Haar Transform 

Overview of the Quantum Haar Transform (QHT) 

• Wavelet transforms decompose data into spatio-temporal components 

while preserving data locality. 

• Commonly used in image processing for dimension reduction. 

• We leverage the pyramidal variant of the Haar transform, the first and 

simplest discrete wavelet transform. 

• The quantum equivalent of the classical Haar transform, the quantum 

Haar transform (QHT) decomposes amplitude-encoded data into low- 

and high-frequency components. 

 

Multi-level Multidimensional 

Quantum Haar Transform 

Circuit (No Rearrangement) 

• Applying Hadamard gates to 

the least-significant qubits 

representing a particular 

dimension of data performs 

QHT decomposition of 

components. 

• One level of decomposition for 

each Hadamard gate per 

dimension. 

• Each level of decomposition 

reduces the size of the 

corresponding dimension by a 

factor of 2. 

1-level Multidimensional 

Quantum Haar Transform 

Circuit (With Rearrangement) 

• Data rearrangement groups 

the fragmented low- and high-

frequency components. 

• In the quantum circuit, 

rearrangement can be done 

with rotate-right (RoR) gates 

constructed from SWAP gates. 

• Can also be done by classical 

register remapping/indexing 

during quantum-to-classical 

(Q2C) data decoding to 

conserve depth. 

 

Pyramidal Structure 

of Multi-level QHT-

based Dimension 

Reduction 

• Adding / extending 

the data 

rearrangements 

with interlevel 

permutations can 

be used to create a 

pyramidal structure. 

• Allows clearer 

representation of 

quantum operations 

applied to 

dimension-reduced 

data. 

• With SWAP 

optimizations, entire 

operation requires 

constant depth. 

Experimental Setup 

Techniques:  

• Quantum simulation was performed using Pennylane [4].  

• Classical optimization was performed using PyTorch [3]. 

 

• Multi-Dimensional Quantum Convolutional Classifiers (MQCCs) 

• Tested with kernel size of 2 and unity stride. 

• Experiments included both MQCC and the width-optimized MQCC. 

• Convolutional Neural Network (CNN) [8] 

• Kernel size, stride, circular padding, and feature count from MQCC. 

• Max pooling was used instead of average pooling. 

• Quanvolutional Neural Networks [5] 

• Replaced first convolution / pooling layer in CNN with quanvolution layer 

using stride=2. 

• Quantum Convolutional Neural Network (QCNN) [1, 6] 

• Original implementation didn’t encode states correctly when dimensions 

were not powers of 2. 

• Tested with original data encoding and corrected data encoding. 

Results and Analysis 

Datasets 

We performed binary classification 

with the following datasets at their 

original resolution (see below) and 

down-sampled to (16×16). 

• MNIST [2]: (28×28). 

• FashionMNIST [10]: (28×28). 

• CIFAR-10 [9]: (32×32×3). 

Metrics (average over 10 trials) 

• Log Loss 

• Accuracy 

• Training Time 

• Testing Time  

• Number of Parameters 

• Circuit Depth (quantum only) 

• Gate Count (quantum only) 

Hardware Specifications: 

• Intel Xeon Gold 6342 CPU 

• 48 Cores 

• Base frequency @ 2.8GHz 

• 3× NVIDIA A100 80GB GPUs 

• 256GB DDR4 RAM @ 3200MHz  

• PCIe 4.0 connectivity 

Machine Learning Parameters: 

• Optimizer: Adam 

• Loss Function: Log 

• Learning Rate: 0.001 

• Training Batch Size: 8 

• Testing Batch Size: 1000 

• Epoch: 1 

QHT-based Dimension Reduction on (512×512×3) Images 

Multidimensional Quantum Convolutional Classifier (Optimized) 

High-level Overview of MQCC Structure 

Layer Structure 

Parameterized Filter Operation for Quantum Machine Learning 

Rotate-Right (RoR) Gate 

Acknowledgements: This research used resources of the Oak Ridge Leadership 

Computing Facility, which is a DOE Office of Science User Facility supported under 

Contract DE-AC05-00OR22725. 
Original Image Low-frequency 

Component  
1-Level Decomposition 

References 

[1] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. 2019. Quantum convolutional neural networks. Nature Physics 

15, 12 (01 Dec 2019), 1273–1278. https://doi.org/10.1038/s41567-019-0648-8  

[2] Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal 

Processing Magazine 29, 6 (2012), 141–142. 

[3] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances 

in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, 

and R. Garnett (Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf  

[4] Ville Bergholm et al. 2022. PennyLane: Automatic differentiation of hybrid 

quantum-classical computations. arXiv:1811.04968 [quant-ph] https://pennylane.ai/  

[5] Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook.2020. Quanvolutional neural 

networks: powering image recognition with quantum circuits. Quantum Machine Intelligence 2, 1 (2020), 2. 

[6] Tak Hur, Leeseok Kim, and Daniel K. Park. 2022. Quantum convolutional neural network for classical data 

classification. Quantum Machine Intelligence 4, 1 (10 Feb 2022), 3. https://doi.org/10.1007/s42484-021-00061-x   

[7] Mingyoung Jeng et al. 2023. Improving quantum-to-classical data decoding using optimized quantum wavelet 

transform. The Journal of Supercomputing (16 Jun 2023). https://doi.org/10.1007/s11227-023-05433-7 

[8] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.  

[9] Learning Multiple Layers of Features from Tiny Images. 2009. Alex Krizhevsky. https://www.cs.toronto.edu/~kriz/

learning-features-2009-TR.pdf.   

[10] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking 

Machine Learning Algorithms. arXiv:1708.07747 [cs.LG]  

†
Includes actual execution time of neural network layers. 

‡
Includes execution time of simulated quantum circuits 

We proposed a variational quantum classification technique that preserves locality in 

multidimensional data using quantum convolution and QHT-based pooling.  

• Compared to QCNNs, our optimized MQCC achieved improvements in log loss, 

accuracy, training/testing time, and gate count due to the preservation of data-locality. 

• Compared to CNNs and quanvolutional neural networks, MQCC demonstrated faster 

convergence, higher average accuracy in the MNIST and FashionMNIST datasets 

while substantially reducing the number of training parameters. 

• Future Work: 

• Optimizations and extensions to multiclass classification 

• Investigate scalability using real-world datasets 

• Implementation on physical quantum hardware 


