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ABSTRACT
In classical machine learning, the convolution operation is lever-
aged in the eponymous class of convolutional neural networks
(CNNs) for capturing the spatial and/or temporal locality of multi-
dimensional input features. Preserving data locality allows CNN
models to reduce the number of training parameters, and hence
their training time, while achieving high classification accuracy.
However, contemporary methods of quantum machine learning
(QML) do not possess effective methods for exploiting data locality,
due to the lack of a generalized and parameterizable implementa-
tion of quantum convolution. In this work, we propose variational
quantum classification techniques that leverage a novel multidimen-
sional quantum convolution operation with arbitrary filtering and
unity stride. We provide the quantum circuits for our techniques
alongside corresponding theoretical analysis. We also experimen-
tally demonstrate the advantage of our method in comparison with
existing quantum and classical techniques for image classification
in staple multidimensional datasets using state-of-the-art quantum
simulations.
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1 INTRODUCTION AND BACKGROUND
Convolutional neural networks (CNNs) present an effective tech-
nique for exploiting data locality in machine learning applications
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such as image classification [8], which allows minimizing the num-
ber of training parameters (and thus training time) without compro-
mising classification accuracy. However, to the best of our knowl-
edge, contemporary quantum machine learning (QML) techniques
that extend CNNs do not take full advantage of quantum comput-
ing. For example, quantum convolutional neural networks (QC-
NNs) [1] use variational quantum algorithms (VQAs), whose ansatz
are based on CNNs, replacing neurons with qubits and quantum
gates. Consequently, the resultant structure places emphasis on
qubit locality rather than data locality, which is not inherently a
valuable quality for capturing multidimensional features. In con-
trast, quanvolutional neural networks (QvNNs) [5] prefix a hybrid
quantum-classical "quanvolutional" layer on a classical CNN and
use a quantum circuit to perform data-local transformations. As a
result, any expected quantum speedup would be nullified by the
overhead of classically pre-processing data into strided windows.

In this work, we propose a novel technique of variational quan-
tum classification. We leverage a direct, generalizable implementa-
tion of convolution and a method of pooling based on the quantum
Haar transform (QHT). We experimentally compare our work to
related classical and quantum algorithms using a state-of-the-art
quantum simulator to show the potential of our technique.

2 PROPOSED METHODOLOGY
We propose a multidimensional quantum convolutional classifier
(MQCC), which extends quantum convolution and pooling tech-
niques to directly implement a CNN structure in a quantum circuit.
Each MQCC ansatz consists of alternating trainable quantum con-
volution and quantum pooling layers, as well as a final trainable
operation that represents the fully-connected layer.

Figure 1: Optimized ℓ-layer MQCC
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We present a novel method of implementing convolution oper-
ations with generic multidimensional filters. The technique adds
“filter" qubits and leverages quantum decrementor operations to
generate shifted replicas of data. Subsequently, it embeds arbitrary
multidimensional convolution filters into a unitary operation 𝑈𝐹 ,
which for classification, we implement with a trainable, parameter-
ized operation. To implement pooling, we leverage the quantum
Haar transform (QHT). The Haar wavelet transform is a common
method of dimension reduction in the classical domain which can
be implemented easily as a quantum operation [7]. Ignoring qubit
permutations, dimension reduction by a factor of 2𝑙 on |𝜓 ⟩, where 𝑙
is the number of decomposition levels and |𝜓 ⟩ is the quantum stat-
evector representing encoded data, can be accomplished by placing
parallel Hadamard gates on the 𝑙 least-significant qubits of |𝜓 ⟩. In
our “optimized" MQCC structure, as shown in Fig. 1, we remove
the additional qubits introduced during the quantum convolution
operation by applying each pooling layer before its corresponding
convolution layer. However, the optimization also introduces in-
formation loss / error, which is mitigated by adding an additional
trainable𝑈𝐹 operation. Finally, we implement the fully-connected
operation as a pyramidal cascade of multiplexed rotation gates (𝑅𝑦 )
that condenses a multi-qubit quantum circuit to a single qubit for
measurement / classification.

3 EXPERIMENTALWORK
We experimentally evaluated our proposed MQCC methods against
CNNs [8], QvNNs [5], and QCNNs [1, 6] in a number of relevant
metrics. Quantum simulation was performed in Pennylane from
Xanadu [4], a framework specialized for quantummachine learning.
Classical optimizationwas performed using PyTorch [3], which also
provided the CNN, dataset, and loss function implementations. We
configured the CNNs to match the corresponding MQCC implemen-
tation in terms of the number of convolution layers, pooling layers,
and features. Experiments were performed on a high-performance
computing (HPC) cluster at the University of Kansas (KU), equipped
with a 48-Core Intel Xeon Gold 6342 CPU running at a base fre-
quency of 2.8GHz, 256GB of DDR4 RAM operating at 3200 MHz,
and 3× NVIDIA A100 80GB GPUs with PCIe 4.0 connectivity.

We performed 10 trials of binary classification on the MNIST
[2], FashionMNIST [10], and CIFAR-10 [9] datasets at both their
original resolution — (28 × 28), (28 × 28), and (32 × 32 × 3) pixels,
respectively — as well as at a down-sampled resolution of (16 × 16)
pixels. Performance was evaluated using log-loss, training time,
testing time, and testing accuracy of each technique. The quan-
tum algorithms were also compared for their circuit depth and
gate count, which are relevant to the decoherence and gate error
constraints for NISQ-era quantum computers.

Our proposedMQCC (optimized) technique consistently required
the fewest trainable parameters and demonstrated the lowest classi-
fication variance among all tested techniques, see Fig. 2. MQCC also
demonstrated improvements in log loss, accuracy, training/testing
time, and gate count across different datasets and data sizes when
compared to QCNNs. In comparison to CNNs and QvNNs, MQCC
also achieved faster convergence and higher average accuracy in
the FashionMNIST dataset despite a higher log-loss. The high accu-
racy variance and low log-loss of CNNs and QvNNs suggest these

Figure 2: Log-loss of binary classification of (28 × 28) pixel
FashionMNIST dataset

models tend to overfit to the training data due to their large number
of trainable parameters.

4 CONCLUSION AND FUTUREWORK
In this work, we proposed a variational quantum classification
technique that preserves locality of multidimensional data. We used
a direct and generalizable implementation of quantum convolution
combined with quantum Haar transform (QHT)-based dimension
reduction. Our experiments demonstrated improved classification
performance in comparison to contemporary classical and quantum
techniques. For future work, we seek to further optimize and extend
our technique to multiclass classification, investigate scalability on
real-world datasets, and conduct experimental trials on physical
quantum hardware.
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