
LATEX TikZposter

Sophisticated Tool Support to Aid Performance Portable Programming

David Boehme, Kevin Huck, Shravan Kale, Vivek Kale, Vanessa Surjadidjaja
Sandia National Laboratories, Lawrence Livermore National Laboratory, University of Oregon

Sophisticated Tool Support to Aid Performance Portable Programming

David Boehme, Kevin Huck, Shravan Kale, Vivek Kale, Vanessa Surjadidjaja
Sandia National Laboratories, Lawrence Livermore National Laboratory, University of Oregon

Tool Support for Performance Portable Programs
•Background: HPC Software for performance portable programming using abstractions for parallelism, e.g., Kokkos, RAJA, are
emerging vehicles for Scientific Software run on supercomputers having node-level heterogeneity.

•Challenge: For this HPC Software’s sustainability, it must aid programmer productivity in developing performant applications.

•One solution: Use basic tools support for profiling and debugging that is associated with performance portable library.

•A limitation: Large programmer effort still needed to manually assess and tune their applications given, e.g., timings and logs.

•Opportunity to improve: Performance portable programs benefit from more sophisticated activities, particuarly: performance
analysis and auto-tuning of applications run on supercomputers, as well as performance monitoring of a collection of applications
run on a supercomputer, i.e., HPC Systems.

•Approach: Provide easy-to-use and low-overhead tool support offering capabilities for sophisticated activities.

•Through a focus on Kokkos, this poster aims to showcase a part of Kokkos Tools that offer capabilities for these sophisticated
activities, given the alternative of tools specific to lower level programming libraries for parallelism.

Kokkos Tools Common Infrastructure
1. Kokkos Tools: a component of the Kokkos ecosystem supporting productivity for Kokkos programming through built tool libraries
containing Kokkos function event callbacks, i.e., tool connectors, along with groundwork to support it.

2. Using it for Kokkos involves simply setting KOKKOS_TOOLS_LIBS to an appropriate sequence of utilities and connectors.

3. Each connector operates independently and is self-contained; a subset of Kokkos Tools can be built as a single library.

4. A part of Kokkos Tools helps said sophisticated activities. It comprises of:

(a) a set of community and in-house tool connectors for said sophisticated activities; and

(b) for use by tool connectors of (a), common utilities, e.g., kernel filter, sampler, and a common tool support infrastructure

5. Kokkos Tools common utilities offers common set of capabilities for easily developing any third-party tool connectors and the
infrastructure allows connectors to perform arbitrarily complex actions upon the event of Kokkos kernel or function invocation.

6. The three Kokkos Tools connectors for sophisticated activities are (1) Caliper for performance analysis of applications, (2) Apex
for auto-tuning applications, and (3) LDMS for performance monitoring of HPC Systems.

https://github.com/kokkos/kokkos-tools

Performance Analysis with Caliper

Figure 1: Nightly performance regression testing of a large physics code with Caliper.

Caliper is an instrumentation and performance profiling li-
brary. It measures user-defined regions in C++ HPC ap-
plications through its source-code annotation API or the
Kokkos profiling interface.
Ensemble Analysis

•Caliper is particularly well-suited for ensemble analysis,
such as scaling studies or comparing different program
configurations.

•To support ensemble analyses, Caliper records program
metadata like build and execution configurations as well
as application input options.

https://github.com/LLNL/Caliper

Auto-tuning with APEX

electron_push
calls: 1.0
threads: 1.0
time: 9.402332355

Kokkos::parallel_for [HIP, Dev:0] FillCount
calls: 14.0
threads: 1.0
time: 0.096374283

Kokkos::parallel_for [HIP, Dev:0] LocalCount
calls: 14.0
threads: 1.0
time: 0.001240205

Kokkos::parallel_for [HIP, Dev:0] SectCount
calls: 434.0
threads: 1.0
time: 0.012935777

Kokkos::parallel_for [HIP, Dev:0] WritePerm
calls: 14.0
threads: 1.0
time: 0.099694253

Kokkos::parallel_for [HIP, Dev:0] ZeroCount
calls: 14.0
threads: 1.0
time: 0.000430604

Kokkos::parallel_for [HIP, Dev:0] get_current_triangles_op
calls: 14.0
threads: 1.0
time: 0.034339235

Kokkos::parallel_for [HIP, Dev:0] ptl_to_sorted_tmp_array_ph1_op
calls: 42.0
threads: 1.0
time: 0.352020352

Kokkos::parallel_for [HIP, Dev:0] push_diag_op
calls: 1.0
threads: 1.0
time: 0.512558154

Kokkos::parallel_for [HIP, Dev:0] push_op
calls: 14.0
threads: 1.0
time: 8.007361294

Kokkos::parallel_for [HIP, Dev:0] tmp_array_to_ptl_ph1_op
calls: 42.0
threads: 1.0
time: 0.061282138

copy_ptl_from_device
calls: 1.0
threads: 1.0
time: 0.218246368

hipDeviceSynchronize
calls: 621.0
threads: 1.0
time: 0.000755565

hipDeviceSynchronize
calls: 14.0
threads: 1.0
time: 0.096190446

hipDeviceSynchronize
calls: 14.0
threads: 1.0
time: 0.001040437

hipDeviceSynchronize
calls: 434.0
threads: 1.0
time: 0.007679328

hipLaunchKernel
calls: 434.0
threads: 1.0
time: 0.001771479

GPU: void Kokkos::Impl::hip_parallel_launch_local_memory<Kokkos::..
calls: 434.0
threads: 1.0
time: 0.001266887

hipDeviceSynchronize
calls: 14.0
threads: 1.0
time: 0.099499066

hipDeviceSynchronize
calls: 14.0
threads: 1.0
time: 0.000243423

hipDeviceSynchronize
calls: 14.0
threads: 1.0
time: 0.030262195

hipFuncGetAttributes
calls: 1.0
threads: 1.0
time: 0.003672764

hipLaunchKernel
calls: 14.0
threads: 1.0
time: 0.000114595

GPU: void Kokkos::Impl::hip_parallel_launch_local_memory<Kokkos::..
calls: 14.0
threads: 1.0
time: 0.030050358

hipDeviceSynchronize
calls: 42.0
threads: 1.0
time: 0.351390354

hipLaunchKernel
calls: 42.0
threads: 1.0
time: 0.000239316

GPU: void Kokkos::Impl::hip_parallel_launch_local_memory<Kokkos::..
calls: 42.0
threads: 1.0
time: 0.350632569

hipDeviceSynchronize
calls: 1.0
threads: 1.0
time: 0.512395369

hipDeviceSynchronize
calls: 14.0
threads: 1.0
time: 8.007072052

hipLaunchKernel
calls: 14.0
threads: 1.0
time: 0.000116408

GPU: void Kokkos::Impl::hip_parallel_launch_local_memory<Kokkos::..
calls: 14.0
threads: 1.0
time: 8.006841603

hipDeviceSynchronize
calls: 42.0
threads: 1.0
time: 0.060758244

hipLaunchKernel
calls: 42.0
threads: 1.0
time: 0.000187906

GPU: void Kokkos::Impl::hip_parallel_launch_local_memory<Kokkos::..
calls: 42.0
threads: 1.0
time: 0.060065687

Kokkos deep copy: HIP -> Host
calls: 1.0
threads: 1.0
time: 0.218237421

hipMemcpyAsync
calls: 1.0
threads: 1.0
time: 0.218207714

GPU: CopyDeviceToHost
calls: 1.0
threads: 1.0
time: 0.20923843

The Autonomic Performance Environment for eXascale (APEX) is a performance tool designed
for asynchronous runtimes such as HPX, Pthreads, OpenMP, and GPU-accelerated codes. As
such, it is well suited for measuring both Kokkos and the back-ends available in Kokkos. APEX
is integrated with both the Kokkos Tools interface as well as the Kokkos tuning interface to
both measure and runtime tune Kokkos applications.

•APEX measures Kokkos data allocations, frees, and deep copies.

•APEX measures parallel_for, parallel_reduce, parallel_scan constructs.

•APEX measures the back-end exectution, and connects task dependency across physical re-
sources (threads, GPUs) – see figure, right.

•APEX performs runtime autotuning on standard kernels to determine optimal vector length
and team size for TeamPolicy – see figure, below, for example with ExaMiniMD.

0 2 4 6 8 10 12 14 16
seconds from program start

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

va
lu

e

[2:parallel_for,1:Neighbor2D::fill_neigh_list_full,tree_node:defaul...
locality 0
Mean: 0.6

0 2 4 6 8 10 12 14 16
seconds from program start

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

va
lu

e

[2:parallel_for,1:Neighbor2D::fill_neigh_list_full,tree_node:defaul...
locality 0
Mean: 0.4

0 2 4 6 8 10 12 14 16
seconds from program start

11000000
12000000
13000000
14000000
15000000
16000000
17000000

va
lu

e

[2:parallel_for,1:Neighbor2D::fill_neigh_list_full,tree_node:defaul...
locality 0
Mean: 14099925.5

https://github.com/UO-OACISS/apex/

Performance Monitoring with LDMS

•The Lightweight Data Monitoring System, or LDMS, is a performance
monitoring tool for an HPC System.

• Its LDMS Kokkos Tools connector enables direct analysis of
Kokkos applications in terms of granularity and specificity of
Kokkos kernel functions, e.g., analysis of memory usage of a
Kokkos::parallel_for() in the scope of an HPC System.

•Figure illustrates the conceptual workflow of LDMS connector, and its
use of the common Kokkos Tools infrastructure and sampler utility.

• Sampler offers data order reduction and time efficiency for LDMS data
collection, and it is showing performance benefit to DoE applications
using the LDMS connector.

https://github.com/ovis-hpc/ovis

Conclusions and Next Steps

Summary

• Showcased infrastructure of Kokkos Tools and 3 sophisticated
Kokkos Tools connectors: (1) Caliper; (2) Apex; and (3) LDMS.

•These open-source connectors offer potential for performance
analysis and auto-tuning to quickly obtain high performance for
Kokkos programs on exascale systems.

Future Work

•Consider AI/ML engines for auto-analysis and tuning

•Test with MPI+Kokkos applications

•Reduce overheads on Apex and Caliper by removing overly con-
servative fencing and by trying sampler.

•LDMS connector with feedback

Contact: boehme3@llnl.gov, khuck@cs.uoregon.edu, shravank@cs.uoregon.edu, vlkale@sandia.gov, vsurjad@sandia.gov

https://github.com/kokkos/kokkos-tools
https://github.com/LLNL/Caliper
https://github.com/UO-OACISS/apex/
https://github.com/ovis-hpc/ovis

