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1 Tooling for Performance Portable Programs
Scientific application programmers need to productively improve
performance of applications run on a supercomputer having het-
erogeneous nodes. Using manual methods via basic tools that, e.g.,
measure raw timings of a parallel loop, are tedious and can be
unreliable. So, sophisticated tools which automatically provide in-
sight via performance analysis and optimizations via auto-tuning
are used [8, 27]. Such sophisticated tools are available for vendor-
specific GPU languages like NVIDIA’s Nsight for CUDA [2, 29, 31].

Given the emergence of performance portable programming li-
braries having abstractions for node-level parallelism [15, 16], an
associated set of sophisticated tools will benefit productivity in un-
derstanding and optimizing performance. Key challenges for such
tools are ensuring the tools work for all vendor backends, function
name demangling, and reducing instrumentation overheads. Pro-
viding such tools with heed to these challenges will help sustain
mass user adoption of performance portable programming libraries.
Considering Kokkos and its ecosystem [15], this work showcases
and demonstrates how Kokkos application programs run on a super-
computer benefit from the subset of Kokkos Tools [21] that provides
performance analysis and auto-tuning capabilities1, making these
tools a viable alternative to corresponding tools for vendor-specific
and/or low-level libraries.
2 Kokkos Tools Common Infrastructure
Kokkos Tools is comprised of a set of community-built and in-house
Kokkos Tools connectors and a common supporting infrastructure.
The infrastructure, which provides common environment variables,
a tools callback interface and implementation, and utility connec-
tors, is important to the effectiveness and efficiency of the connec-
tors. Using Kokkos Tools connectors for a Kokkos application is
simple: a sequence of pre-built tool connector dynamic libraries,
(.so files) are specified in the infrastructure’s environment variable
KOKKOS_TOOLS_LIBS. One then runs the Kokkos application’s ex-
ecutable as usual. Developing a Kokkos Tool connector involves
implementing a small number of event callbacks. Each connector
1https://github.com/kokkos/kokkos-tools

operates independently, though any subset of Kokkos Tools connec-
tors can be built as one library. The Kokkos Tools implementation
facilitates low instrumentation overhead through capabilities such
as its sampling and filtering utilities.
3 Sophisticated Kokkos Tools Connectors
This section describes Kokkos Tools connectors for (1) performance
analysis and (2) auto-tuning, noting ease of use, ease of develop-
ment, and efficiency given the Kokkos Tools infrastructure.

3.1 Ensemble Analysis via Caliper
Caliper [12] is a performance instrumentation and profiling library
for HPC codes. It provides an instrumentation API for C, C++, and
Fortran codes that lets developers mark regions of interest in the
application code, while backend components capture events from
common third-party libraries and programming frameworks like
MPI, CUDA, and HIP, as well as the Kokkos connector interface.
Built-in performance measurement recipes cover a wide range of
use cases, from lightweight always-on profiling to detailed event
tracing. Caliper also provides a measurement control API, which
lets users configure and control performance measurements from
within the application as well as query performance at runtime.

Caliper’s ability to record user-defined labels for code features,
either directly through its annotation API or through user-labelled
kernels from the Kokkos connector interface, is especially important
for modern C++ codes where compiler-generated symbol names
are often too obscure to allow meaningful associations with the
original source code [13].

Caliper is particularly well-suited for conducting ensemble anal-
yses, such as scaling studies or comparing different application
configurations. Ensemble analyses require not just per-kernel per-
formancemetrics of each run, but also metadata describing the build
and execution configuration. This data typically includes build and
execution information such as compiler and build flags, the number
of OpenMP threads and/or MPI ranks used, and the program input
configuration. Caliper automatically collects this metadata with the
help of the Adiak [3] library. The collected data can be analyzed in
Thicket [14], an open-source Python toolkit for exploratory data
analysis of multi-run performance experiments. At LLNL, many
HPC applications now leverage Caliper’s ensemble analysis capa-
bilities for automatic performance regression testing as part of their
nightly test runs.
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3.2 Auto-tuning via APEX
APEX (Autonomic Performance Environment for eXascale) [22] is
a performance measurement library for distributed, asynchronous
multitasking runtime systems. Implemented in C++, it provides
support for lightweight measurement and high concurrency. To
support performance measurement in systems that employ user-
level threading, APEX uses a task dependency chain in addition to
the call stack to produce traces and dependency graphs. APEX is
integrated with the Kokkos Tools interface, and APEX has support
for all available Kokkos backends through vendor-provided support
(CUPTI/NVML, Roctracer/ROCm-SMI, SYCL), open tool interfaces
(OMPT), or direct integration (HPX). This support includes synchro-
nous API calls, asynchronous data transfers and kernel executions,
and periodic system utilization data.

A key component of APEX is the Policy Engine. The Policy En-
gine of APEX provides a lightweight API to engineer policies that
can improve the performance of the application, execute a desired
functionality on the runtime or select important runtime and ap-
plication parameters. APEX uses the Kokkos runtime adaptation
interface to automatically tune at runtime RangePolicy and Team-
Policy parameters associated with kernel launch. Custom tuning of
any other Kokkos parameter, e.g., thread counts, scheduling policies,
tiling factors, chunk sizes, is also possible through this interface.
The policy engine can use algorithms from the search library Active
Harmony [34], or with exhaustive, random or simulated annealing
search methods. Kokkos policies define a unique context based on
the specific Kokkos region, its location in the dependency graph,
the input parameters and the requested output variable. Once a
search has converged, its settings are cached to disk and can be
re-used for subsequent simulations.
4 Production-level HPC System Management
An HPC System is a collection of applications run on a supercom-
puter [10, 29]. Real-time performance management of an HPC Sys-
tem is essential for continual success of production-level scientific
simulation via supercomputing [7, 20].

LDMS (Lightweight Distributed Metric Service)2 is a monitoring
software that continuously provides system and application perfor-
mance used for DoE science simulations. With continuous moni-
toring, LDMS provides supercomputer users and system adminis-
trators with metrics that can be used in statistical and ML-based
analysis to detect performance degradation, system abnormalities,
or analyze resource management on HPC systems. LDMS was de-
signed for lightweight data collection with extreme-scalability. As
a monitoring software, LDMS’s quick delivery of application and
system metrics allows for automated and at-runtime feedback.

One such application metric collected by LDMS is Kokkos kernel
information. Using the Kokkos Tools sampler utility, the LDMS
Kokkos Tools connector utilizes LDMS Streams to obtain applica-
tion kernel information pushed from the Kokkos sampler. Kernel
information, packaged into a JSON message, is passed through
LDMS’s streams and then to indicated storage. In conjunction with
Kokkos, along with Caliper and APEX Kokkos Tools connectors,
LDMS can collect multiple Kokkos application metrics and use

2https://github.com/ovis-hpc/ovis

these alongside system metrics to determine an application’s opti-
mal run conditions. With LDMS’s bi-directional streams, Kokkos
applications can adjust their inputs based on current application
and system performance.
5 Related Work
OpenMP and its fine-grained tools support via OMPT can also be
a path towards productively improving performance for a perfor-
mance portable program [26, 28]. However, its drawback is that
the number of callback events for OpenMP that an OpenMP tool
connector developer has to implement and setup is significantly
larger than that of a Kokkos Tool connector.

The ubiquitous performance profiling tools perf and gprofng [5]
provide sophisticated performance analysis for any application pro-
gram run on a Linux system, but it is generalized towards single-
process profiling. Unlike Caliper, it does not have detailed and
meaningful tracing capabilities aimed at science applications.

OpenTuner [6] is a generic program auto-tuner using ensem-
bles of built-in or user-defined search techniques. Bliss [30] uses
multiple, diverse Bayesian Optimization Models to identify the
best model output, i.e., tuning parameter configuration, for an
application-architecture pair, and its approach avoids a sub-optimal
local minima. APEX uses Active Harmony for search strategies but
it also offers performance portable auto-tuning of Kokkos programs
which can run across a variety of backends.

MPCDF [33] allows for performance analysis and insight of
HPC Systems at TU-Munich’s HPC clusters. Unlike MPCDF, LDMS
directly integrates with Kokkos, thereby providing real-time insight
on performance for a Kokkos application that is more meaningful
through, e.g., identifying very high GPU memory utilization of a
Kokkos parallel kernel in a Kokkos application.
6 Conclusion
In this work, we demonstrated how Kokkos Tools connectors for
performance analysis and auto-tuning alongwith a commonKokkos
Tools infrastructure allow for productively improving performance
of a science application needing to be run on a supercomputer. We
also showed how these connectors can work seamlessly together
and provide benefits to production-level HPC System management.

For future work, we will (1) experiment with inter-node parallel
applications using MPI+Kokkos, (2) assess viability of the connec-
tors discussed for parallel Python and Fortran applications and (3)
use AI/ML and the connectors discussed to develop an HPC System
performance feedback system [7].
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