
Sophisticated Tools for Performance Analysis and Auto-tuning
of Performance Portable Parallel Programming

David Boehme
Lawrence Livermore National

Laboratory
Livermore, California, USA

boehme3@llnl.gov

Kevin Huck
University of Oregon
Eugene, Oregon, USA
khuck@cs.uoregon.edu

Shravan Kale
University of Oregon
Eugene, Oregon, USA
shravank@uoregon.edu

Vivek Kale
Sandia National Laboratories
Livermore, California, USA

vlkale@sandia.gov

Vanessa Surjadidjaja
Sandia National Laboratories

Albuquerque, New Mexico, USA
vsurjad@sandia.gov

Keywords
HPC tools, parallel programming, performance portable, perfor-
mance analysis, auto-tuning, performance monitoring, Kokkos, C++

1 Tooling for Performance Portable Programs
Scientific application programmers need to productively improve
performance of applications run on a supercomputer having het-
erogeneous nodes. Using manual methods via basic tools that, e.g.,
measure raw timings of a parallel loop, are tedious and can be
unreliable. So, sophisticated tools which automatically provide in-
sight via performance analysis and optimizations via auto-tuning
are used [8, 27]. Such sophisticated tools are available for vendor-
specific GPU languages like NVIDIA’s Nsight for CUDA [2, 29, 31].

Given the emergence of performance portable programming li-
braries having abstractions for node-level parallelism [15, 16], an
associated set of sophisticated tools will benefit productivity in un-
derstanding and optimizing performance. Key challenges for such
tools are ensuring the tools work for all vendor backends, function
name demangling, and reducing instrumentation overheads. Pro-
viding such tools with heed to these challenges will help sustain
mass user adoption of performance portable programming libraries.
Considering Kokkos and its ecosystem [15], this work showcases
and demonstrates how Kokkos application programs run on a super-
computer benefit from the subset of Kokkos Tools [21] that provides
performance analysis and auto-tuning capabilities1, making these
tools a viable alternative to corresponding tools for vendor-specific
and/or low-level libraries.
2 Kokkos Tools Common Infrastructure
Kokkos Tools is comprised of a set of community-built and in-house
Kokkos Tools connectors and a common supporting infrastructure.
The infrastructure, which provides common environment variables,
a tools callback interface and implementation, and utility connec-
tors, is important to the effectiveness and efficiency of the connec-
tors. Using Kokkos Tools connectors for a Kokkos application is
simple: a sequence of pre-built tool connector dynamic libraries,
(.so files) are specified in the infrastructure’s environment variable
KOKKOS_TOOLS_LIBS. One then runs the Kokkos application’s ex-
ecutable as usual. Developing a Kokkos Tool connector involves
implementing a small number of event callbacks. Each connector
1https://github.com/kokkos/kokkos-tools

operates independently, though any subset of Kokkos Tools connec-
tors can be built as one library. The Kokkos Tools implementation
facilitates low instrumentation overhead through capabilities such
as its sampling and filtering utilities.
3 Sophisticated Kokkos Tools Connectors
This section describes Kokkos Tools connectors for (1) performance
analysis and (2) auto-tuning, noting ease of use, ease of develop-
ment, and efficiency given the Kokkos Tools infrastructure.

3.1 Ensemble Analysis via Caliper
Caliper [12] is a performance instrumentation and profiling library
for HPC codes. It provides an instrumentation API for C, C++, and
Fortran codes that lets developers mark regions of interest in the
application code, while backend components capture events from
common third-party libraries and programming frameworks like
MPI, CUDA, and HIP, as well as the Kokkos connector interface.
Built-in performance measurement recipes cover a wide range of
use cases, from lightweight always-on profiling to detailed event
tracing. Caliper also provides a measurement control API, which
lets users configure and control performance measurements from
within the application as well as query performance at runtime.

Caliper’s ability to record user-defined labels for code features,
either directly through its annotation API or through user-labelled
kernels from the Kokkos connector interface, is especially important
for modern C++ codes where compiler-generated symbol names
are often too obscure to allow meaningful associations with the
original source code [13].

Caliper is particularly well-suited for conducting ensemble anal-
yses, such as scaling studies or comparing different application
configurations. Ensemble analyses require not just per-kernel per-
formancemetrics of each run, but also metadata describing the build
and execution configuration. This data typically includes build and
execution information such as compiler and build flags, the number
of OpenMP threads and/or MPI ranks used, and the program input
configuration. Caliper automatically collects this metadata with the
help of the Adiak [3] library. The collected data can be analyzed in
Thicket [14], an open-source Python toolkit for exploratory data
analysis of multi-run performance experiments. At LLNL, many
HPC applications now leverage Caliper’s ensemble analysis capa-
bilities for automatic performance regression testing as part of their
nightly test runs.



SC ’23, November 14–18, 2023, Denver, Colorado, USA D. Boehme, K. Huck, S. Kale, V. Kale, V. Surjadidjaja

3.2 Auto-tuning via APEX
APEX (Autonomic Performance Environment for eXascale) [22] is
a performance measurement library for distributed, asynchronous
multitasking runtime systems. Implemented in C++, it provides
support for lightweight measurement and high concurrency. To
support performance measurement in systems that employ user-
level threading, APEX uses a task dependency chain in addition to
the call stack to produce traces and dependency graphs. APEX is
integrated with the Kokkos Tools interface, and APEX has support
for all available Kokkos backends through vendor-provided support
(CUPTI/NVML, Roctracer/ROCm-SMI, SYCL), open tool interfaces
(OMPT), or direct integration (HPX). This support includes synchro-
nous API calls, asynchronous data transfers and kernel executions,
and periodic system utilization data.

A key component of APEX is the Policy Engine. The Policy En-
gine of APEX provides a lightweight API to engineer policies that
can improve the performance of the application, execute a desired
functionality on the runtime or select important runtime and ap-
plication parameters. APEX uses the Kokkos runtime adaptation
interface to automatically tune at runtime RangePolicy and Team-
Policy parameters associated with kernel launch. Custom tuning of
any other Kokkos parameter, e.g., thread counts, scheduling policies,
tiling factors, chunk sizes, is also possible through this interface.
The policy engine can use algorithms from the search library Active
Harmony [34], or with exhaustive, random or simulated annealing
search methods. Kokkos policies define a unique context based on
the specific Kokkos region, its location in the dependency graph,
the input parameters and the requested output variable. Once a
search has converged, its settings are cached to disk and can be
re-used for subsequent simulations.
4 Production-level HPC System Management
An HPC System is a collection of applications run on a supercom-
puter [10, 29]. Real-time performance management of an HPC Sys-
tem is essential for continual success of production-level scientific
simulation via supercomputing [7, 20].

LDMS (Lightweight Distributed Metric Service)2 is a monitoring
software that continuously provides system and application perfor-
mance used for DoE science simulations. With continuous moni-
toring, LDMS provides supercomputer users and system adminis-
trators with metrics that can be used in statistical and ML-based
analysis to detect performance degradation, system abnormalities,
or analyze resource management on HPC systems. LDMS was de-
signed for lightweight data collection with extreme-scalability. As
a monitoring software, LDMS’s quick delivery of application and
system metrics allows for automated and at-runtime feedback.

One such application metric collected by LDMS is Kokkos kernel
information. Using the Kokkos Tools sampler utility, the LDMS
Kokkos Tools connector utilizes LDMS Streams to obtain applica-
tion kernel information pushed from the Kokkos sampler. Kernel
information, packaged into a JSON message, is passed through
LDMS’s streams and then to indicated storage. In conjunction with
Kokkos, along with Caliper and APEX Kokkos Tools connectors,
LDMS can collect multiple Kokkos application metrics and use

2https://github.com/ovis-hpc/ovis

these alongside system metrics to determine an application’s opti-
mal run conditions. With LDMS’s bi-directional streams, Kokkos
applications can adjust their inputs based on current application
and system performance.
5 Related Work
OpenMP and its fine-grained tools support via OMPT can also be
a path towards productively improving performance for a perfor-
mance portable program [26, 28]. However, its drawback is that
the number of callback events for OpenMP that an OpenMP tool
connector developer has to implement and setup is significantly
larger than that of a Kokkos Tool connector.

The ubiquitous performance profiling tools perf and gprofng [5]
provide sophisticated performance analysis for any application pro-
gram run on a Linux system, but it is generalized towards single-
process profiling. Unlike Caliper, it does not have detailed and
meaningful tracing capabilities aimed at science applications.

OpenTuner [6] is a generic program auto-tuner using ensem-
bles of built-in or user-defined search techniques. Bliss [30] uses
multiple, diverse Bayesian Optimization Models to identify the
best model output, i.e., tuning parameter configuration, for an
application-architecture pair, and its approach avoids a sub-optimal
local minima. APEX uses Active Harmony for search strategies but
it also offers performance portable auto-tuning of Kokkos programs
which can run across a variety of backends.

MPCDF [33] allows for performance analysis and insight of
HPC Systems at TU-Munich’s HPC clusters. Unlike MPCDF, LDMS
directly integrates with Kokkos, thereby providing real-time insight
on performance for a Kokkos application that is more meaningful
through, e.g., identifying very high GPU memory utilization of a
Kokkos parallel kernel in a Kokkos application.
6 Conclusion
In this work, we demonstrated how Kokkos Tools connectors for
performance analysis and auto-tuning alongwith a commonKokkos
Tools infrastructure allow for productively improving performance
of a science application needing to be run on a supercomputer. We
also showed how these connectors can work seamlessly together
and provide benefits to production-level HPC System management.

For future work, we will (1) experiment with inter-node parallel
applications using MPI+Kokkos, (2) assess viability of the connec-
tors discussed for parallel Python and Fortran applications and (3)
use AI/ML and the connectors discussed to develop an HPC System
performance feedback system [7].
Acknowledgments
This work is supported in part by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of En-
ergy, Office of Science and the National Nuclear Security Admin-
istration. APEX is supported by the Scientific Discovery through
Advanced Computing (SciDAC) program funded by U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Computing
Research (ASCR) under contract DE-SC0021299. Sandia National
Laboratories is a multimission laboratory managed and operated
by NTESS LLC, a wholly owned subsidiary of Honeywell Inter-
national Inc., for the U.S. Department of Energy’s NNSA under
contract DE-NA0003525. This paper is cross-referenced at Sandia
as SAND2023-09180C.



Sophisticated Tools for Performance Analysis and Auto-tuning
of Performance Portable Parallel Programming SC ’23, November 14–18, 2023, Denver, Colorado, USA

References
[1] 2020. The LLVM Compiler Infrastructure. http://llvm.org/.
[2] 2022. Best Practices Guide::CUDAToolkit. Section 9.1: Asynchronous and

Overlapping Transfers with Computation. https://docs.nvidia.com/cuda/cuda-
c-best-practices-guide/. https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-
computation [Online; Accessed September 1, 2022].

[3] 2023. Adiak. http://github.com/LLNL/adiak.
[4] 2023. Perlmutter User Guide. https://www.nersc.gov/systems/perlmutter/.
[5] Yara Ahmad. 2022. Perf vs gprof: Comparing Software Performance Pro-

filing Tools. https://www.redhat.com/architect/perf-vs-gprofng. https://
www.redhat.com/architect/perf-vs-gprofng [Online; Accessed August 3rd, 2023].

[6] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jef-
frey Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. 2014. OpenTuner:
an extensible framework for program autotuning. In International Conference
on Parallel Architectures and Compilation, PACT ’14, Edmonton, AB, Canada, Au-
gust 24-27, 2014, José Nelson Amaral and Josep Torrellas (Eds.). ACM, 303–316.
https://doi.org/10.1145/2628071.2628092

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, andMatei
Zaharia. 2009. Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report. University of California at Berkeley. http://berkeleyclouds.blogspot.com/
2009/02/above-clouds-released.html

[8] D H Bailey, J Chame, C Chen, J Dongarra, M Hall, J K Hollingsworth, P Hovland,
S Moore, K Seymour, J Shin, A Tiwari, S Williams, and H You. 2008. PERI
Auto-tuning. Journal of Physics: Conference Series 125, 1 (2008), 012089. http:
//stacks.iop.org/1742-6596/125/i=1/a=012089

[9] Seonmyeong Bak, Colleen Bertoni, Swen Boehm, Reuben Budiardja, Barbara
Chapman, Johannes Doerfert, Markus Eisenbach, Hal Finkel, Oscar Hernandez,
Joseph Huber, Shintaro Iwasaki, Vivek Kale, Paul Kent, JaeHyuk Kwack, Meifeng
Lin, Piotr Luszczek, Ye Luo, Buu Pham, Swaroop Pophale, Kiran Ravikumar,
Vivek Sarkar, Thomas Scogland, Shilei Tian, and P.K. Yeung. 2021. OpenMP
Application Experiences: Porting to Accelerated Nodes. In Journal of Parallel
Computing. https://doi.org/10.1016/j.parco.2021.102856

[10] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William
Dally, Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp,
Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven
Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, Katherine Yelick,
Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon,WilliamHarrod, Jon Hiller, Stephen Keckler, Dean
Klein, Peter Kogge, R. Stanley Williams, and Katherine Yelick. 2008. ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems. Technical
Report 0. University of Notre Dame, Computational Science and Engineering
Department.

[11] Abhinav Bhatele, Lukasz Wesolowski, Eric Bohm, Edgar Solomonik, and
Laxmikant V. Kale. 2010. Understanding Application Performance via Micro-
benchmarks on Three Large Supercomputers: Intrepid, Ranger and Jaguar. Inter-
national Journal of High Performance Computing Applications (IJHPCA) (2010).
http://hpc.sagepub.com/cgi/content/abstract/1094342010370603v1.

[12] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
Performance Introspection for HPC Software Stacks. In SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 550–560. https://doi.org/10.1109/SC.2016.46

[13] David Boehme, Kevin Huck, Jonathan Madsen, and Josef Weidendorfer. 2019. The
Case for a Common Instrumentation Interface for HPC Codes. In 2019 IEEE/ACM
International Workshop on Programming and Performance Visualization Tools
(ProTools). 33–39. https://doi.org/10.1109/ProTools49597.2019.00010

[14] Stephanie Brink, Michael McKinsey, David Boehme, Connor Scully-Allison, Ian
Lumsden, Daryl Hawkins, Treece Burgess, Vanessa Lama, Jakob Luettgau, Kather-
ine E Isaacs, et al. 2023. Thicket: Seeing the Performance Experiment Forest for
the Individual Run Trees. High-Performance Parallel and Distributed Computing
(HPDC 2023) 6, 7 (2023), 23.

[15] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216. https://
doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[16] R. Hornung H. Jones W. Killian A. J. Kunen O. Pearce P. Robinson B. S. Ryujin T.
R. W. Scogland D. A. Beckingsale, J. Burmark. 2019. RAJA: Portable Performance
for Large-Scale Scientific Applications. 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC) (2019).

[17] Kaushik Datta. 2009. Auto-tuning Stencil Codes for Cache-Based Multicore Plat-
forms. Ph. D. Dissertation. EECS Department, University of California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html

[18] LLVM Developers. [n. d.]. Optimizations Remarks in LLVM. http://llvm.org/
docs/Remarks.html.

[19] LLVM Developers. 2020. OpenMP in LLVM. http://openmp.llvm.org/docs/.
[20] Constantinos Evangelinos and Chris N. Hill. 2008. Cloud Computing for parallel

Scientific HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2. In Cloud Computing for parallel Scientific HPC
Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models on
Amazon’s EC2 (Chicago, IL). Cloud Computing and Its Applications.

[21] Si Hammond. [n. d.]. Profiling and Debugging Support for Kokkos. https:
//www.osti.gov/servlets/purl/1531140

[22] Kevin A. Huck. 2022. Broad Performance Measurement Support for Asyn-
chronous Multi-Tasking with APEX. In 2022 IEEE/ACM 7th International Work-
shop on Extreme Scale Programming Models and Middleware (ESPM2). 20–29.
https://doi.org/10.1109/ESPM256814.2022.00008

[23] Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. 1996. Load-
sharing in Heterogeneous Systems via Weighted Factoring. In Proceedings of the
Eighth Annual ACM symposium on Parallel Algorithms and Architectures (Padua,
Italy) (SPAA ’96). ACM, Padua, Italy, 318–328.

[24] Shoaib Kamil, Cy Chan, Samuel Williams, Leonid Oliker, John Shalf, Mark Howi-
son, and E. Wes Bethel. 2009. A Generalized Framework for Auto-tuning Stencil
Computations. In In Proceedings of the Cray User Group Conference.

[25] Tobias Klug, Michael Ott, Josef Weidendorfer, Carsten Trinitis, and Technis-
che Universität München. 2008. autopin, Automated Optimization of Thread-to-
Core Pinning on Multicore Systems.

[26] LLVM Developers 2020. LLVM/Clang OpenMP Support. https://clang.llvm.org/
docs/OpenMPSupport.html.

[27] Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A High-performance,
Portable Implementation of the Message Passing Interface Standard. Parallel
Comput. 22 (1996), 789–828.

[28] Joachim Protze. 2017. How to Get the Most out of the ompt Profiling In-
terface. https://openmpcon.org/wp-content/uploads/openmpcon2017/Day2-
Session3-Protze.pdf.

[29] Daniel Reed, Dennis Gannon, and Jack Dongarra. 2022. Reinventing High Per-
formance Computing: Challenges and Opportunities. arXiv:2203.02544 [cs.DC]

[30] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2021. Bliss:
Auto-Tuning Complex Applications Using a Pool of Diverse Lightweight Learning
Models. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 1280–1295. https:
//doi.org/10.1145/3453483.3454109

[31] Usman Saleem. 2022. NVIDIA’s Tensor Cores for Machine Learning and AI –
Explained. https://appuals.com/nvidias-tensor-cores-for-machine-learning-and-
ai-explained/. https://appuals.com/nvidias-tensor-cores-for-machine-learning-
and-ai-explained/ [Online; Accessed September 1, 2022].

[32] Sameer S Shende and Allen D Malony. 2006. The TAU parallel performance
system. The International Journal of High Performance Computing Applications
20, 2 (2006), 287–311.

[33] Luka Stanisic and Klaus Reuter. 2019. MPCDF HPC Performance Monitoring
System: Enabling Insight via Job-Specific Analysis. arXiv:1909.11704 [cs.DC]

[34] Cristian Tapus, I-Hsin Chung, and Jeffrey K Hollingsworth. 2002. Active har-
mony: Towards automated performance tuning. In SC’02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing. IEEE, 44–44.

[35] Xingfu Wu, Prasanna Balaprakash, Michael Kruse, Jaehoon Koo, Brice Videau,
Paul Hovland, Valerie Taylor, Brad Geltz, Siddhartha Jana, and Mary Hall. 2023.
ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales.
arXiv:2303.16245 [cs.DC]

http://llvm.org/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
http://github.com/LLNL/adiak
https://www.nersc.gov/systems/perlmutter/
https://www.redhat.com/architect/perf-vs-gprofng
https://www.redhat.com/architect/perf-vs-gprofng
https://www.redhat.com/architect/perf-vs-gprofng
https://doi.org/10.1145/2628071.2628092
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://stacks.iop.org/1742-6596/125/i=1/a=012089
http://stacks.iop.org/1742-6596/125/i=1/a=012089
https://doi.org/10.1016/j.parco.2021.102856
https://doi.org/10.1109/SC.2016.46
https://doi.org/10.1109/ProTools49597.2019.00010
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html
http://llvm.org/docs/Remarks.html
http://llvm.org/docs/Remarks.html
http://openmp.llvm.org/docs/
https://www.osti.gov/servlets/purl/1531140
https://www.osti.gov/servlets/purl/1531140
https://doi.org/10.1109/ESPM256814.2022.00008
https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://openmpcon.org/wp-content/uploads/openmpcon2017/Day2-Session3-Protze.pdf 
https://openmpcon.org/wp-content/uploads/openmpcon2017/Day2-Session3-Protze.pdf 
https://arxiv.org/abs/2203.02544
https://doi.org/10.1145/3453483.3454109
https://doi.org/10.1145/3453483.3454109
https://appuals.com/nvidias-tensor-cores-for-machine-learning-and-ai-explained/
https://appuals.com/nvidias-tensor-cores-for-machine-learning-and-ai-explained/
https://appuals.com/nvidias-tensor-cores-for-machine-learning-and-ai-explained/
https://appuals.com/nvidias-tensor-cores-for-machine-learning-and-ai-explained/
https://arxiv.org/abs/1909.11704
https://arxiv.org/abs/2303.16245

	1 Tooling for Performance Portable Programs
	2 Kokkos Tools Common Infrastructure
	3 Sophisticated Kokkos Tools Connectors
	3.1 Ensemble Analysis via Caliper
	3.2 Auto-tuning via APEX

	4 Production-level HPC System Management
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

