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TEZIP COMPRESSION PRINCIPLES
LCLS-II at SLAC, SNS at Oak Ridge Laboratory, and 
other instruments use software written in C and 
C++, producing huge volumes of time evolving data 
at high rate [6, 5]. Data compression can decrease 
the volume of data we need to move and store. 
TEZIP is a neural network (NN) based compressor 
designed for high-quality compression of time-
evolving data, but TEZIP is written in Python and is 
not easily usable from or ported to C++ [4]. TEZIP 
isn't the only compressor with this challenge, such 
as the LinLogCompress.jl in Julia and other 
compressors using PyTorch/TensorFlow, e.g., 
Autoencoder Based Compressor [1, 3]. Bespoke 
C/C++ integrations for each compressor would be 
infeasible. In this work we develop new 
components in LibPressio that allow us to 
integrate with TEZIP and other external 
compressors efficiently with a systematic 
approach [7]

• TEZIP and LibPressio were designed for different 
input formats (colored images vs arrays) that 
need flexible and efficient conversion strategies

• TEZIP presents a high startup overhead from 
initialization that needs mitigation strategies.

• TEZIP was designed for out-of-core 
compression, and LibPressio for in-core.

• We need good strategies to share memory and 
hide file access overheads for fair comparisons.
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Figure 1: Flowchart Contextualizing the TEZIP-
LibPressio Integration with other integration 

pathways across languages. Our contributions in 
green.

• TEZIP is a neural network based compressor designed for time-evolving data
• Image data is preprocessed into python objects for training and validation via 

hickle, which serializes to HDF5 [4]
• Model architecture is saved in JSON format, along with the model weights in 

HDF5
• Similar to SZ3, TEZIP predicts the next data point based on the previous, and stores 

the difference (delta) between the prediction and the true next point [2]
• Unlike SZ3, TEZIP needs a training phase to train the Neural Network. This results 

in overhead in the form of initializing TensorFlow, the training of neural network
• Timing Profile of TEZIP compression and loading of the model shows opportunities 

for optimization during loading of the model, prediction,  and entropy (Figure 3)
Optimize integration to enable fair comparisons 
to other compressors
• Utilize Mochi to avoid start up overhead
• Utilize shared memory to avoid copies and FS 

overheads
• Explore the model training
• Model training is in the “set_options” 

command, and is not included in the timing
• Research how to shorten the model loading 

and prediction time for TEZIP

Basic Integration of TEZIP into LibPressio is 
completed

• Compression, decompression, and metric 
generation for TEZIP are enabled by 
LibPressio External Compressor Framework

• Artifacts generated during TEZIP processes 
shadow data using patterns found by NN

• This work sets a precedent for the integration 
of non C/C++ compressors into LibPressio

• A similar framework can be used for other 
compressors in the future

EVALUATION

Figure 2: Flowchart Depicting 
Basic Steps of TEZIP and calling 

protocol from LibPressio

Figure 3: Flowchart Depicting Time Elapsed For Stages of TEZIP Compression

Hurricane Isabel Dataset
 Error Bound: 1e-06
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 Error Bound: 1e-06

Compressor Comparison Methodology
• Without this integration, comparison to other 

compressors would be difficult
• 4 Compressors Via LibPressio: TEZIP, SZ3, ZFP, 

TTHRESH 
• 3 Error Bounds: 1e-04 to 1e-06, absolute error 

bound
• 3 Datasets from Scientific Data Reduction 

Benchmarks [8]
• Hurricane ISABEL: Weather Simulation
• NYX: Cosmological Simulation
• ExaFEL: LCLS Serial Crystallography Image Data

• Compression Ratio And Artifact Analysis

Analysis
• Applications care about compression ratio and what artifacts are 

generated in the process. This integration makes an analysis possible.
• TEZIP’s compression ratio for Hurricane Isabel is 128 which is 2.4 times 

greater than the SZ3’s, 52.8 (Figure 4A). 
• TEZIP: Since the neural network observes patterns and predict data, it 

can erroneously shadow images’ most probable input for a given space. 
(Figure 5A, 5B)

• SZ3: Interpolation Error can result in one outlying data point creating a 
shadowing effect on the surrounding data (Figure 5C)

Figure 5A: TEZIP, Bound 1e-06

Figure 5C: SZ3, Error Bound 1e-02
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Figure 5: Decompression Artifacts for SZ3 and TEZip
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