
MOTIVATION

RESEARCH CHALLENGES

ACKNOWLEDGMENTS

CONCLUSION

FUTURE WORK 

TEZIP COMPRESSION PRINCIPLES
LCLS-II at SLAC, SNS at Oak Ridge Laboratory, and 
other instruments use software written in C and 
C++, producing huge volumes of time evolving data 
at high rate [6, 5]. Data compression can decrease 
the volume of data we need to move and store. 
TEZIP is a neural network (NN) based compressor 
designed for high-quality compression of time-
evolving data, but TEZIP is written in Python and is 
not easily usable from or ported to C++ [4]. TEZIP 
isn't the only compressor with this challenge, such 
as the LinLogCompress.jl in Julia and other 
compressors using PyTorch/TensorFlow, e.g., 
Autoencoder Based Compressor [1, 3]. Bespoke 
C/C++ integrations for each compressor would be 
infeasible. In this work we develop new 
components in LibPressio that allow us to 
integrate with TEZIP and other external 
compressors efficiently with a systematic 
approach [7]

• TEZIP and LibPressio were designed for different 
input formats (colored images vs arrays) that 
need flexible and efficient conversion strategies

• TEZIP presents a high startup overhead from 
initialization that needs mitigation strategies.

• TEZIP was designed for out-of-core 
compression, and LibPressio for in-core.

• We need good strategies to share memory and 
hide file access overheads for fair comparisons.

RESULTS

Integrating TEZIP into LibPressio: A Case Study of Integrating a 
Dynamic Application into a Static C Environment

Isita Talukdar1, Amarjit Singh2 (advisor), Robert Underwood3 (advisor), Kento Sato2 (advisor), Weikuan Yu4 (advisor) 
University of California Berkeley1, RIKEN Center for Computational Science2, Argonne National Laboratory3, Florida State University4

Figure 4: Compressor Performance

• This work is supported in part by the National Science Foundation award 1952302. Any opinions, findings, and 
conclusions or recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation.

• Argonne National Laboratory’s contribution is based upon work supported by Laboratory Directed Research 
and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of 
Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH1135.

• This work has been supported by the COE research grant in computational science from
Hyogo Prefecture and Kobe City through Foundation for Computational Science.

Figure 1: Flowchart Contextualizing the TEZIP-
LibPressio Integration with other integration 

pathways across languages. Our contributions in 
green.

• TEZIP is a neural network based compressor designed for time-evolving data
• Image data is preprocessed into python objects for training and validation via 

hickle, which serializes to HDF5 [4]
• Model architecture is saved in JSON format, along with the model weights in 

HDF5
• Similar to SZ3, TEZIP predicts the next data point based on the previous, and stores 

the difference (delta) between the prediction and the true next point [2]
• Unlike SZ3, TEZIP needs a training phase to train the Neural Network. This results 

in overhead in the form of initializing TensorFlow, the training of neural network
• Timing Profile of TEZIP compression and loading of the model shows opportunities 

for optimization during loading of the model, prediction,  and entropy (Figure 3)
Optimize integration to enable fair comparisons 
to other compressors
• Utilize Mochi to avoid start up overhead
• Utilize shared memory to avoid copies and FS 

overheads
• Explore the model training
• Model training is in the “set_options” 

command, and is not included in the timing
• Research how to shorten the model loading 

and prediction time for TEZIP

Basic Integration of TEZIP into LibPressio is 
completed

• Compression, decompression, and metric 
generation for TEZIP are enabled by 
LibPressio External Compressor Framework

• Artifacts generated during TEZIP processes 
shadow data using patterns found by NN

• This work sets a precedent for the integration 
of non C/C++ compressors into LibPressio

• A similar framework can be used for other 
compressors in the future

EVALUATION

Figure 2: Flowchart Depicting 
Basic Steps of TEZIP and calling 

protocol from LibPressio

Figure 3: Flowchart Depicting Time Elapsed For Stages of TEZIP Compression

Hurricane Isabel Dataset
 Error Bound: 1e-06

NYX Dataset
 Error Bound: 1e-06

ExaFEL Dataset
 Error Bound: 1e-06

Compressor Comparison Methodology
• Without this integration, comparison to other 

compressors would be difficult
• 4 Compressors Via LibPressio: TEZIP, SZ3, ZFP, 

TTHRESH 
• 3 Error Bounds: 1e-04 to 1e-06, absolute error 

bound
• 3 Datasets from Scientific Data Reduction 

Benchmarks [8]
• Hurricane ISABEL: Weather Simulation
• NYX: Cosmological Simulation
• ExaFEL: LCLS Serial Crystallography Image Data

• Compression Ratio And Artifact Analysis

Analysis
• Applications care about compression ratio and what artifacts are 

generated in the process. This integration makes an analysis possible.
• TEZIP’s compression ratio for Hurricane Isabel is 128 which is 2.4 times 

greater than the SZ3’s, 52.8 (Figure 4A). 
• TEZIP: Since the neural network observes patterns and predict data, it 

can erroneously shadow images’ most probable input for a given space. 
(Figure 5A, 5B)

• SZ3: Interpolation Error can result in one outlying data point creating a 
shadowing effect on the surrounding data (Figure 5C)

Figure 5A: TEZIP, Bound 1e-06

Figure 5C: SZ3, Error Bound 1e-02

Please find Isita Talukdar’s CV at this QR 
code 
UC Berkeley Class of 2026

REFERENCES
[1] Milan Klöwer, Miha Razinger, Juan J. Dominguez, Peter D. Düben, and Tim N. Palmer. 2021. Compressing atmospheric 
data into its real information content. Nature Computational Science 1, 11 (2021), 713–724. 
DOI:http://dx.doi.org/10.1038/s43588-021-00156-2 
[2] Xin Liang et al. 2023. SZ3: A modular framework for composing prediction-based error-bounded lossy compressors. 
IEEE Transactions on Big Data 9, 2 (2023), 485–498. DOI:http://dx.doi.org/10.1109/tbdata.2022.3201176 
[3] Jinyang Liu et al. 2021. Exploring autoencoder-based error-bounded compression for scientific data. 2021 IEEE 
International Conference on Cluster Computing (CLUSTER) (2021). 
DOI:http://dx.doi.org/10.1109/cluster48925.2021.00034
[4] Rupak Roy et al. 2021. Compression of time evolutionary image data through predictive deep neural networks. 2021 
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) (2021). 
DOI:http://dx.doi.org/10.1109/ccgrid51090.2021.00014 
[5] Galen Shipman et al. 2014. Accelerating data acquisition, reduction, and analysis at the Spallation Neutron Source. 
2014 IEEE 10th International Conference on e-Science (2014). DOI:http://dx.doi.org/10.1109/escience.2014.31 
[6] J. Stohr. 2011. Linac Coherent Light Source II (LCLS-II) conceptual design report (2011). 
DOI:http://dx.doi.org/10.2172/1029479 
[7] Robert Underwood, Victoriana Malvoso, Jon C. Calhoun, Sheng Di, and Franck Cappello. 2021. Productive and 
performant generic lossy data compression with Libpressio. 2021 7th International Workshop on Data Analysis and 
Reduction for Big Scientific Data (DRBSD-7) (2021). DOI:http://dx.doi.org/10.1109/drbsd754563.2021.00005 
[8] Kai Zhao et al. 2020. SDRBench: Scientific Data Reduction Benchmark for lossy compressors. 2020 IEEE International 
Conference on Big Data (Big Data) (2020). DOI:http://dx.doi.org/10.1109/bigdata50022.2020.9378449 

Decompressed Layer 3Original Layer 3

Figure 5B: TEZIP, Bound 1e-06
Decompressed Layer 5Original Layer 5

Figure 5: Decompression Artifacts for SZ3 and TEZip

Original Layer 70 (non RGB)

Decompressed Layer 70 (non RGB)

128

52.8
20.5

2.38

437

1.141.40 2.01

7.99

1.121.14 1.60

128

52.8
20.5

2.38

142

564

60.2

4.23

142 128
32.2

3.09

Figure 4A Figure 4B


