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1 INTRODUCTION

SPring-8, LCLS-II-HE, SNS, and other instruments use software written in C and C++, producing huge volumes of
time evolving data at high rate. [1] [8] [7] TEZIP is a neural network (NN) based compressor designed for high-quality
compression of time-evolving data, but TEZIP is written in Python and is not easily usable from or ported to C++. Other
compressors face similar issues, such as the LinLogCompress.jl in Julia [2] and compressors using PyTorch/TensorFlow,
e.g., Autoencoder Based Compressor [4]. In this work, we develop new components in LibPressio that allow us to
integrate with TEZIP and other external compressors efficiently and evaluate them with a systematic approach.

Integrating TEZIP and LibPressio requires building a bridge between python and C++ environments beyond what is
offered by PyBind11, while also prioritizing efficiency for high performance computing.

2 BACKGROUND

TEZIP is an AI-based compressor designed for time-evolving data [6]. TEZIP predicts the next frame of data based on
the previous, and stores the difference between the prediction and the true next frame for compression. LibPressio is an
abstraction across compressors for dense tensors.

3 METHODOLOGY

Before TEZIP is used for compression, the image data must be used to train and test the PredNet model [5] that TEZIP
uses for the aforementioned prediction. Image data is preprocessed into python objects for training and validation via
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hickle, which serializes to HDF5. Model architecture is saved in JSON format, along with the model weights in an HDF5
file. (See Figure 2 on Poster)

Unlike SZ3, TEZIP needs a training phase to train the Neural Network, where as SZ3’s Lorenzo predictor does not
require training [3], leading to overhead costs. Timing profiles of TEZIP when the compression command, as displayed
below show opportunities for optimization during loading of the model and during prediction phase. (See Figure 3 on
Poster)

For this study, we use SZ3, ZFP, and TTHRESH via LibPressio, and focus on the compression ratio metric and an
artifact analysis, to analyze compression quality. LibPressio requires binary data as an input, while TEZIP must take a
folder of RGB images. We developed a python script to scale the binary data into RGB images. Because of this conversion,
only 3D datasets could be selected. We used three different 3D datasets from the SDRBench: Hurricane Isabel, NYX, and
EXAFEL [9].

4 RESULTS

TEZIP compression ratio is the highest for all datasets at an absolute error bound of 1e-06. All compression was
done with an absolute error bound. TEZip gets a much higher compression ratio (better) there are some artifacts
generated during compression. There is a well-known tradeoff between quality and compressed data size in lossy
compression. TEZIP’s neural network operate by recognizing patterns in data, and is capable of being a "universal
function approximator" in a way that the predictors/transforms in SZ3, tthresh, and ZFP are not. (See Figure 4 on Poster)

Compression of data can result in unexpected artifacts in the data, as demonstrated in comparisons of original
versus decompressed slices of the Hurricane Isabel Data. TEZIP’s neural network can erroneously shadow images’ most
probable input for a given space (Figure 5A, 5B). Similarly, in SZ3, interpolation error can result in one outlying data
point creating a shadowing affect on the surrounding data (Figure 5C). Though the SZ3 artifacts are shown at an error
bound of 1e-02, the same artifacts exist at smaller error bounds, but their breadth and magnitude get smaller as the
bound gets smaller. (See Figure 5 on Poster)

5 CONCLUSION

Metrics can be generated for TEZIP compression and decompression via LibPressio. TEZIP compression ratios are
higher than all other compressors (Figure 4). TEZIP’s compression ratio (Error Bound 1e-06) for Hurricane Isabel is 128
which is 2.4 times greater than the leading SZ3’s, 52.8.

In the future, we must optimize integration to enable fair comparisons to other compressors. We could utilize Mochi
to avoid start up overhead. Additionally, we could utilize shared Memory to avoid copies and file sharing overheads.
TEZIP’s model training time could also be explored, as it is currently done independent of the LibPressio call to TEZIP.

In conclusion, this work sets a precedent for the integration of non C/C++ compressors into LibPressio. A similar
framework can be used for other compressors in the future, leading to new developments in the field of data compression.
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