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Reduce-order model for flow simulation Computational performance Reproduction of turbulent flow field by ROM simulation
Background
• Numerical simulation, required in industrial applications, such as design 

optimization of automobile shapes and optimal control, must be executed 
repeatedly by changing the conditions, such as the model shape and in-flow 
velocity. The cost of such a simulation is a major obstacle for industrial users 
considering the feasible size of the computational system and amount of 
computational time.

• Reduced-order model (ROM) using POD in conjunction with Galerkin 
projection can reduce the calculation cost. However, it does not provide 
sufficient reproduction accuracy for an advection-dominant problem, that is, 
a case where nonlinearity appears strongly.

• To deal with such problem, a neural-network-based nonlinear dimensional 
reduction technique is required. Specifically, to deal with high-precision 3d 
data, distributed learning on massively-parallel distributed systems such as 
Fugaku is indispensable in terms of memory allocation and training speed. 

Methods

Single CMG computational performance
• The entire training loop, which involves I/O and communications, indicates 

370.31 GFLOPS, which corresponds to 24.28% of the single-precision floating-
point arithmetic peak performance. This is 1.5 TFLOPS in terms of 1 node (4 
CMGs).

• The convolution kernel indicates 753 TFLOPS, which corresponds to 49.29 % of 
the peak performance. This is 3.0 TFLOPS in terms of 1 node (4 CMGs). This 
kernel calls the convolution routine in the Intel oneDNN library installed by 
Fujitsu and Riken in the DL4Fugaku project.

• CPU cycle counter result indicates whether the core works efficiently in each 
CPU cycle in the convolution routine. The light blue bar indicates the amount 
of time while the instructions are committed most efficiently --- that is, this 
kernel is highly optimized for Fujitsu A64FX CPU.

Application 1: Three-dimensional cylinder flow (Re=1000)
• The flow field reconstructed by POD after reducing into 128 variables does 

not contain small flow field structures contained in FOM simulation result.
• However, using the same number of variables, our method (MD-CNNAE + 

LSTM) reproduces the complex vortex structures close to those created with 
the FOM simulation result, especially in spanwise velocity.

Multi-node computational performance
• The single-precision floating-point arithmetic performance of the entire 

learning procedure is 7.8 PFLOPS with 25,250 nodes (1,212,000 cores).  The 
weak scaling performance is 72.9% (relative to 750 node).

• The forward propagation routine‘s performance, and the back propagation 
routine's performance indicates 25.1PFLOPS and 19.4 PFLOPS, respectively. 

• The convolution routines show almost perfect scaling and achieve around 100 
PFLOPS.

• We implemented neural network-based reduced order modeling method for 
three-dimensional turbulent flow simulation using distributed learning on Fugaku.

• Time evolution of turbulent three-dimensional flow could be simulated at 
significantly lower cost (approximately four orders of magnitude) without major 
loss in accuracy. 

• Using single CMG, entire training loop indicates 24.28%, and convolution kernel 
shows 49.29% of the peak performance.

• Our hybrid parallelization implementation scales up to 25,250 computational 
nodes (1,212,000 cores) in the distributed training.

Conclusion

Reduced-order model using neural network
• 1st step: Reduce dimension of flow field data with autoencoder-like neural 

network called “MD-CNN-AE”. After that, we can obtain “latent vector,” which 
contains reduced-order variables.

• 2nd step: Predict time evolution of latent vector with neural network “LSTM”.
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FP arithmetic 
performance

370.31 GFLOPS 
(24.28%a)
→ 1.5TFLOPS/node

753.93 GFLOPS 
(49.29%a)
→  3.0TFLOPS/node

Memory 
throughput

22.97 GB/sec. 
(8.97%a) 

23.92 GB/sec. 
(9.34%a) 

L1D cache miss 
ratio

3.14% (79.51%b) 1.45% (77.72%b) 

L2 cache miss 
ratio

0.55% (15.00%b) 0.20% (11.90%b) 

Computational performance

a Ratio of peak performance
b Demand rate 

Cost breakdown for each CPU cycleCMG (Core Memory Group)
• 12 computational cores

+ 1 HBM2 memory
• Single node has 4 CMGs

(Running at 2.0GHz)
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Cycle Accounting execution time(s) Other instruction commit

4 instruction commit
3 instruction commit

2 instruction commit
1 instruction commit

Barrier synchronization wait
Instruction fetch wait

Store port busy wait
Other wait

Branch instruction wait
Floating-point operation wait

Integer operation wait
Floating-point load L1D cache access wait (*)

Floating-point load L2 cache access wait
Integer load L1D cache access wait

Integer load L2 cache access wait
Floating-point load memory access wait

Integer load memory access wait
Prefetch port busy wait by software prefetch

Prefetch port busy wait by hardware prefetch
----------------------------------------

Floating-point busy rate execution time
Integer busy rate execution time

L1 busy rate execution time
L2 busy rate execution time
Memory busy rate execution time

(*)Include wait time for integer L1D cache access

CMG Instruction
commit

Data access
wait

FP/Int ops.
wait

Other wait

Reconstruction by our method

FOM simulation
Streamwise velocity Spanwise velocity Streamwise velocity

Vertical velocity

Streamwise velocity Spanwise velocity
Streamwise velocity

Vertical velocity

How much is computational 
cost reduction?
ROM reduces the number of 
floating point operations by 5 
orders of magnitude relative to 
FOM
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Implementation of distributed learning
• To utilize tens of thousands of 

computational nodes on Fugaku, we 
implemented a hybrid parallelization 
scheme.

• Domain-decompose encoder and 
multiple decoders and assign MPI 
process to each.

LSTM
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1st step: Dimensional reduction with MD-CNN-AE 2nd step: Prediction of time evolution with LSTM

Implementation of hybrid parallelization scheme
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Parallel execution
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mp Rank number in communicator corresponds to model parallel
dp Rank number in communicator corresponds to data parallel
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Processing flow

Flow field reconstruction with neural network
l Reconstructed flow field after decomposing into 

128 modes
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FOM simulation Reconstruction by POD Reconstruction by our method
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Application 2: Three-dimensional turbulent flow around vehicle (Re=2.8×106)
• Due to the not sufficient number of decomposing modes, small vortex 

structures cannot be reproduced in the reconstruction. However, the vortex 
scale which determines the aerodynamic performance of the vehicle body 
can be successfully reproduced with reconstruction after reducing 128 
variables.

Solver type Incompressible flow solver

Domain size 20m×10m×5m

Number of cubes 1,800

Number of cells per cube 8×8×8 = 512

Total number of cells 1,800×512 = 921,600

Minimum cell size 19.5 mm

Time step size 1.0×10-4 sec

Integration time 120 sec (1,200,000 steps)

Reynolds number 2.8×106

Time integration Crank-Nicolson method

Pressure Poisson Red-Black SOR

Viscous term 2nd order central difference

Convection term QUICK

Dimensional Reduction from 3D to 2D

(a) Entire training loop
Entire training loop

(b) Convolution kernel
Convolution kernel

Simulation result POD reconstruction (16 variables)
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