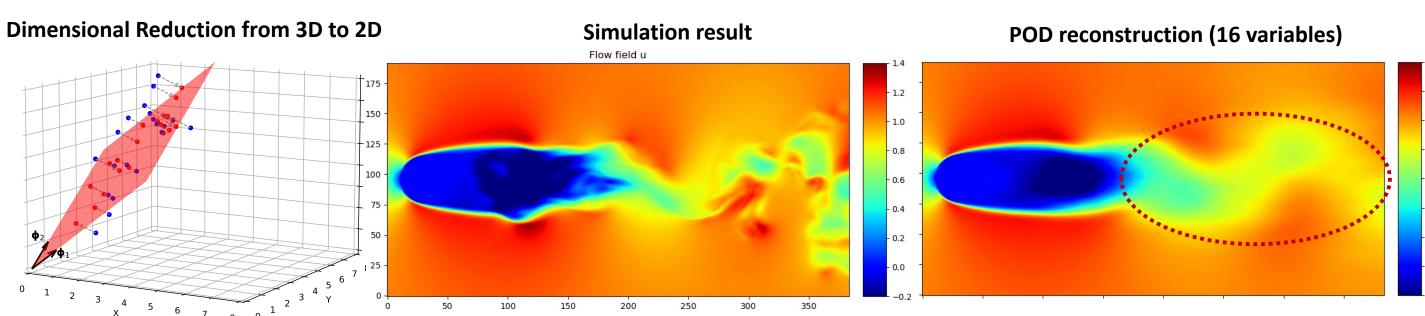
Scalable reduced-order modeling for three-dimensional turbulent flow

Kazuto Ando^{1,2,3}, Rahul Bale^{2,3}, Akiyoshi Kuroda¹, and Makoto Tsubokura^{2,3}

Reduce-order model for flow simulation

Background

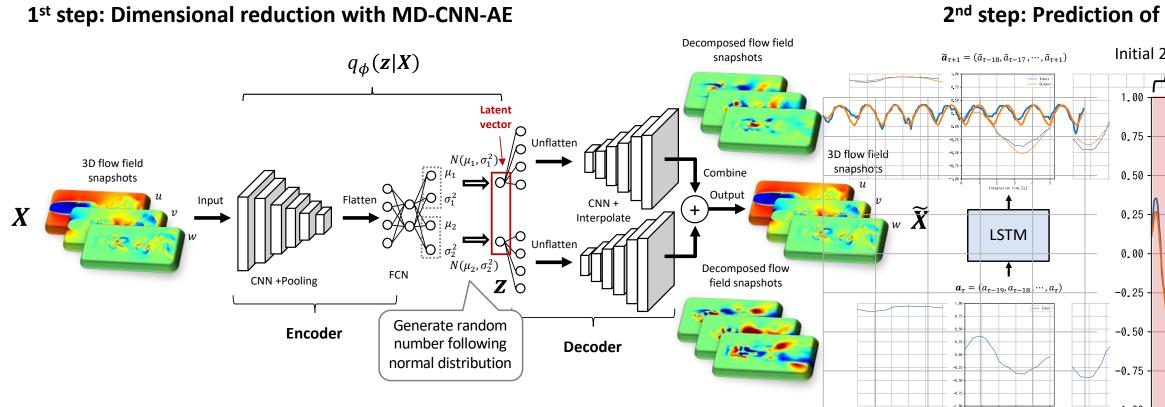
- Numerical simulation, required in industrial applications, such as design optimization of automobile shapes and optimal control, must be executed repeatedly by changing the conditions, such as the model shape and in-flow velocity. The cost of such a simulation is a major obstacle for industrial users considering the feasible size of the computational system and amount of computational time.
- Reduced-order model (ROM) using POD in conjunction with Galerkin projection can reduce the calculation cost. However, it does not provide sufficient reproduction accuracy for an advection-dominant problem, that is, a case where nonlinearity appears strongly.
- To deal with such problem, a neural-network-based nonlinear dimensional reduction technique is required. Specifically, to deal with high-precision 3d data, distributed learning on massively-parallel distributed systems such as Fugaku is indispensable in terms of memory allocation and training speed.



Methods

Reduced-order model using neural network

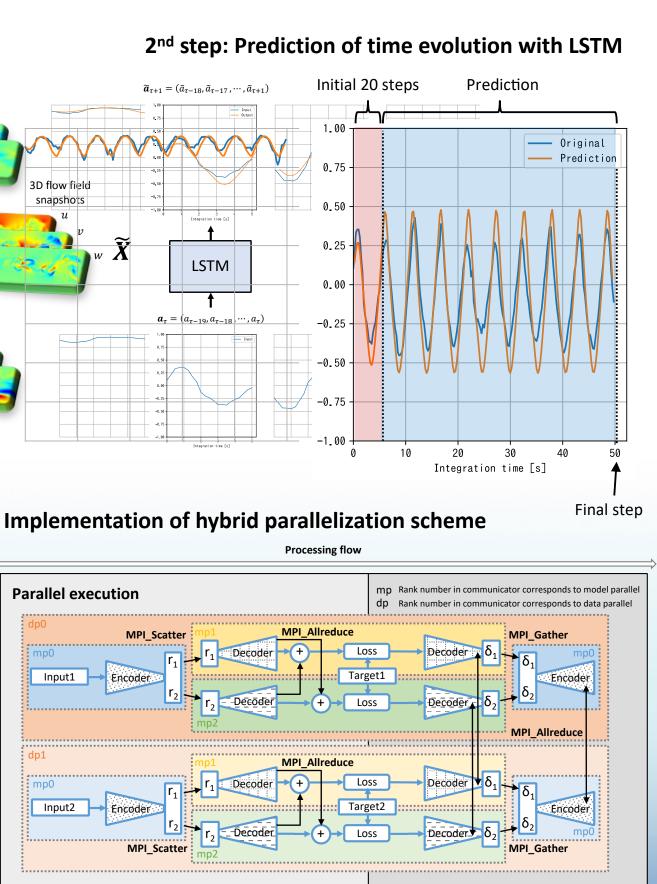
- 1st step: Reduce dimension of flow field data with autoencoder-like neural network called "MD-CNN-AE". After that, we can obtain "latent vector," which contains reduced-order variables.
- 2nd step: Predict time evolution of latent vector with neural network "LSTM".



Implementation of distributed learning

- To utilize tens of thousands of computational nodes on Fugaku, we implemented a hybrid parallelization scheme.
- Domain-decompose encoder and
- multiple decoders and assign MPI

process to each.



¹ Operations and Computer Technologies Division, RIKEN Center for Computational Science (R-CCS), Japan ² Complex Phenomena Unified Simulation Research Team, RIKEN Center for Computational Science (R-CCS), Japan ³ Department of Computational Science, Graduate School of System Informatics, Kobe University, Japan

Computational performance

Single CMG computational performance

- The entire training loop, which involves I/O and communications, indicates 370.31 GFLOPS, which corresponds to 24.28% of the single-precision floatingpoint arithmetic peak performance. This is 1.5 TFLOPS in terms of 1 node (4 CMGs).
- The convolution kernel indicates 753 TFLOPS, which corresponds to 49.29 % of the peak performance. This is 3.0 TFLOPS in terms of 1 node (4 CMGs). This kernel calls the convolution routine in the Intel oneDNN library installed by Fujitsu and Riken in the DL4Fugaku project.
- CPU cycle counter result indicates whether the core works efficiently in each CPU cycle in the convolution routine. The light blue bar indicates the amount of time while the instructions are committed most efficiently --- that is, this kernel is highly optimized for Fujitsu A64FX CPU.

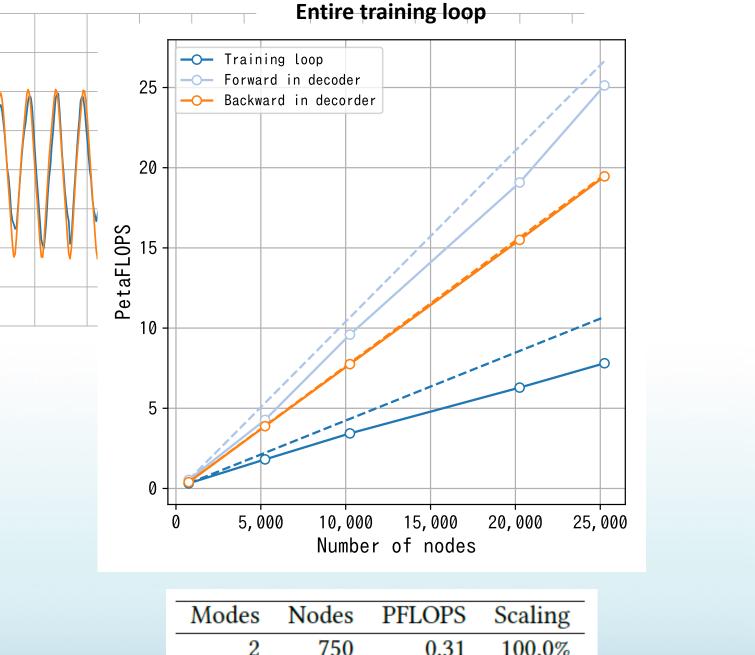
CN	CMG (Core Memory Group)			
•	12 computational cores			
	+ 1 HBM2 memory			
•	Single node has 4 CMGs			

Single node nas 4 civios	
CMG TofuD Interface	11-11-11-11-11-11-11-11-11-11-11-11-11-
HBM21 Core Core Core Core Core Core Core Core	
Core Core Core Core Core Core Core Core	
Core Core Core Core Core Core 7 Core Core Core Core Core	Antonio and a second second
Core Core Core Core Core Core Core Core	AND ADDRESS TO
Anterface	

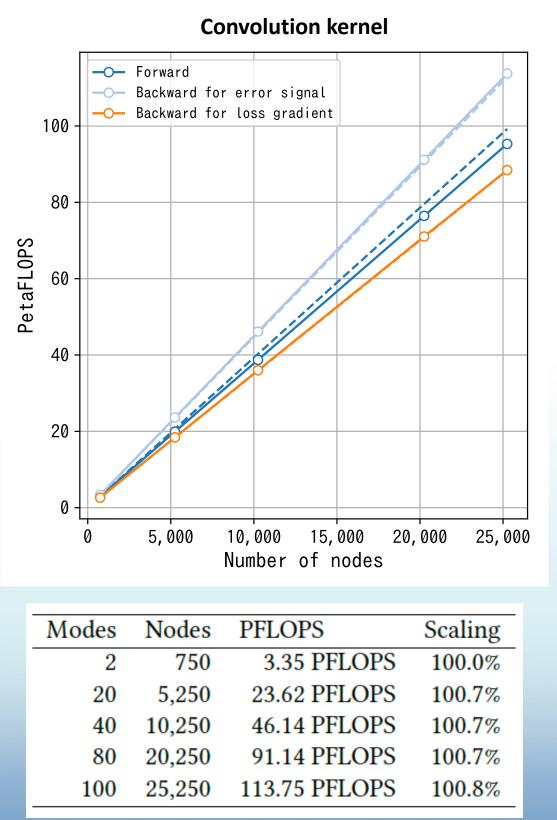
Computational performance (Running at 2.0GF		
	Entire training loop	Convolution kerr
FP arithmetic performance	370.31 GFLOPS (24.28% ^a) → 1.5TFLOPS/node	753.93 GFLOPS (49.29%ª) → 3.0TFLOPS/n
Memory throughput	22.97 GB/sec. (8.97% ^a)	23.92 GB/sec. (9.34% ^a)
L1D cache miss ratio	3.14% (79.51% ^b)	1.45% (77.72% ^b)
L2 cache miss ratio	0.55% (15.00% ^b)	0.20% (11.90% ^b)
		^a Ratio of peak perform ^b Demand rate

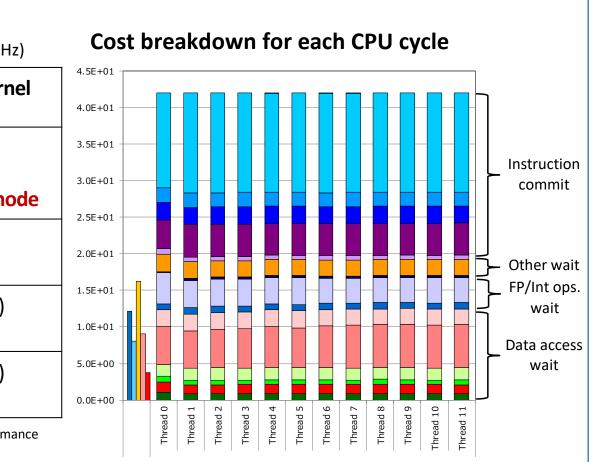
Multi-node computational performance

- The single-precision floating-point arithmetic performance of the entire learning procedure is 7.8 PFLOPS with 25,250 nodes (1,212,000 cores). The weak scaling performance is 72.9% (relative to 750 node).
- The forward propagation routine's performance, and the back propagation routine's performance indicates 25.1PFLOPS and 19.4 PFLOPS, respectively.
- The convolution routines show almost perfect scaling and achieve around 100 PFLOPS.



Modes	Nodes	PFLOPS	Scaling
2	750	0.31	100.0%
20	5250	1.81	81.5%
40	10,250	3.43	79.0%
80	20,250	6.28	73.3%
100	25,250	7.80	72.9%

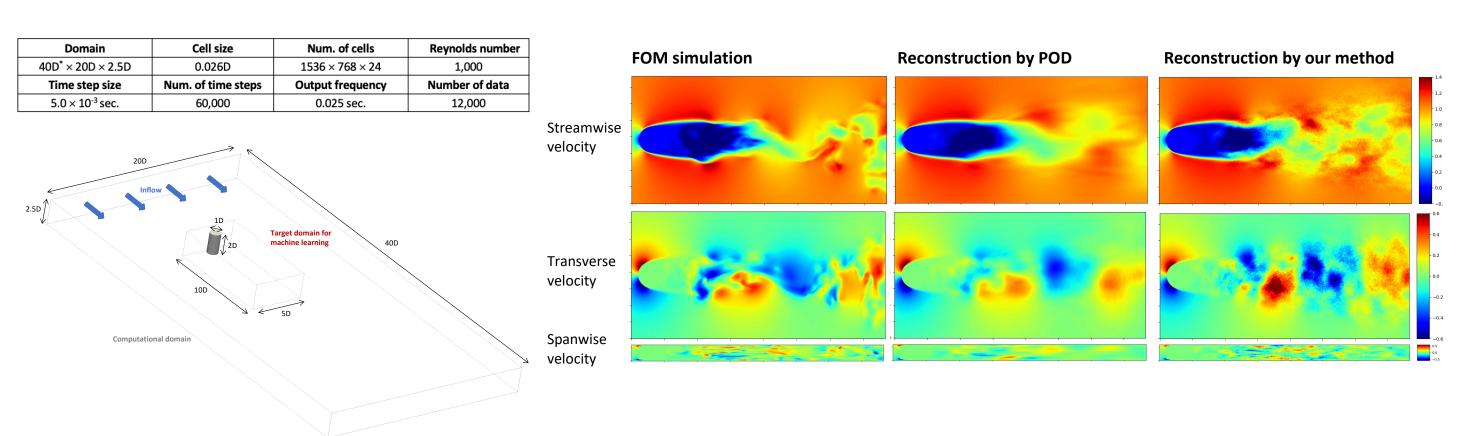




Reproduction of turbulent flow field by ROM simulation

Application 1: Three-dimensional cylinder flow (Re=1000)

- the FOM simulation result, especially in spanwise velocity.



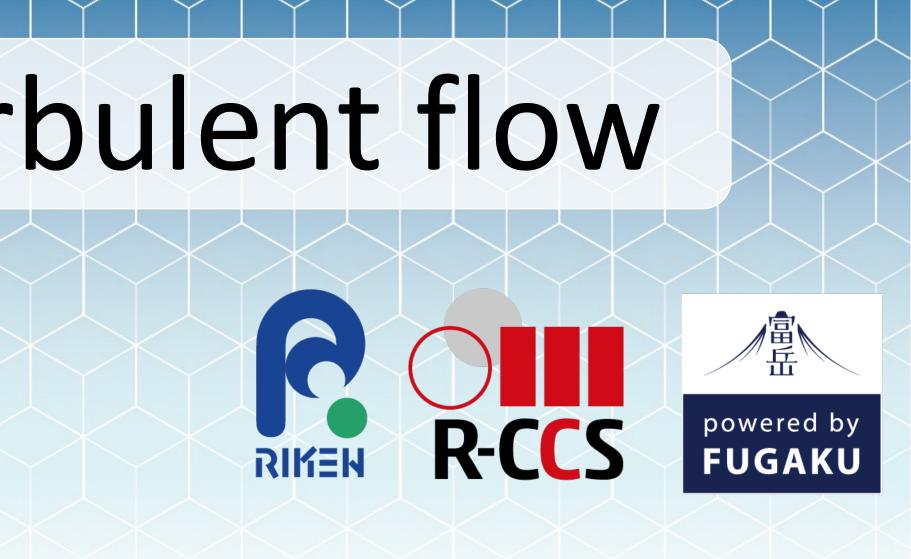
variables.

variabics	•	FON
Solver type	Incompressible flow solver	
Domain size	20m×10m×5m	
Number of cubes	1,800	
Number of cells per cube	8×8×8 = 512	
Total number of cells	1,800×512 = 921,600	-
Minimum cell size	19.5 mm	
Time step size	1.0×10 ⁻⁴ sec	Rec
Integration time	120 sec (1,200,000 steps)	
Reynolds number	2.8×10 ⁶	
Time integration	Crank-Nicolson method	
Pressure Poisson	Red-Black SOR	
Viscous term	2 nd order central difference	
Convection term	QUICK	

How much is computational cost reduction?

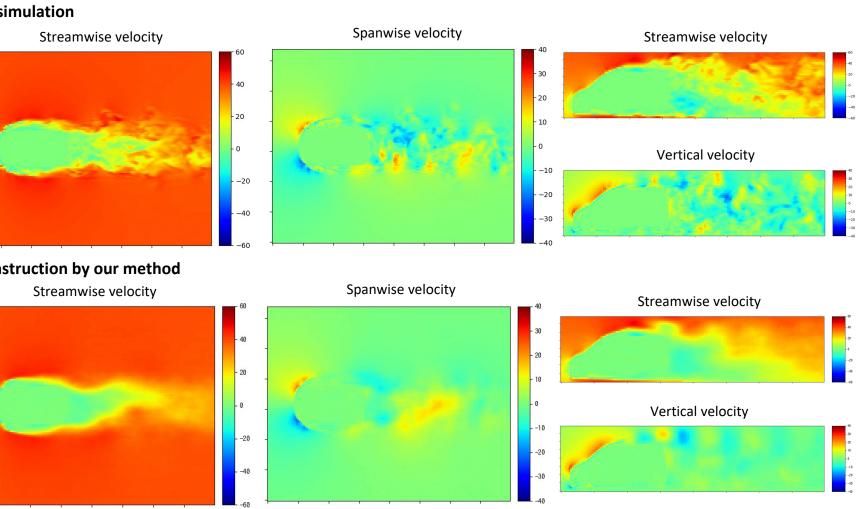
ROM reduces the number of floating point operations by 5 orders of magnitude relative to FOM

- loss in accuracy.
- shows 49.29% of the peak performance.
- nodes (1,212,000 cores) in the distributed training.



• The flow field reconstructed by POD after reducing into 128 variables does not contain small flow field structures contained in FOM simulation result. However, using the same number of variables, our method (MD-CNNAE + LSTM) reproduces the complex vortex structures close to those created with

Application 2: Three-dimensional turbulent flow around vehicle (Re= 2.8×10^6) Due to the not sufficient number of decomposing modes, small vortex structures cannot be reproduced in the reconstruction. However, the vortex scale which determines the aerodynamic performance of the vehicle body can be successfully reproduced with reconstruction after reducing 128



	Num. of cells / Num. of modes	СРU	Num. of CPUs / Num. of CMGs	Total num. of cores	Execution time (/ 1 time-step)	FP operations [*] (/ 1 time-step)
FOM	28,311,552 cells	Intel Xeon Gold 6148(2.4GHz)	32 CPU	384 cores	1.74E+00 sec.	8.55E+04 Gflop
ROM	2 modes	Fujitsu A64FX (2.0GHz)	1 CMG	12 cores	5.72E-04 sec.	4.39E-01 Gflop
	20 modes				7.37E-04 sec.	5.66E-01 Gflop
	516 modes				5.28E-03 sec. ⁺	4.06E+00 Gflop ⁺

Conclusion

• We implemented neural network-based reduced order modeling method for three-dimensional turbulent flow simulation using distributed learning on Fugaku. • Time evolution of turbulent three-dimensional flow could be simulated at significantly lower cost (approximately four orders of magnitude) without major

• Using single CMG, entire training loop indicates 24.28%, and convolution kernel

• Our hybrid parallelization implementation scales up to 25,250 computational