
Scalable reduced-order modeling for three-dimensional turbulent flow
KAZUTO ANDO, RIKEN Center for Computational Science (R-CCS), Japan and Kobe University, Japan
RAHUL BALE, RIKEN Center for Computational Science (R-CCS), Japan and Kobe University, Japan
AKIYOSHI KURODA, RIKEN Center for Computational Science (R-CCS), Japan
MAKOTO TSUBOKURA, RIKEN Center for Computational Science (R-CCS), Japan and Kobe University, Japan

Aneural network-based reduced ordermodelingmethod for three-dimensional
turbulent flow simulation is proposed in this study. This method was im-
plemented as the scalable distributed learning framework on Fugaku. Our
modelingmethod can be divided into two steps of training different networks.
First, a dimensional reduction method was applied to three-dimensional flow
field data using a convolutional-autoencoder-like neural network. Then, the
time evolution of reduced-order variables was predicted using long short-
term memory neural networks. Consequently, it was demonstrated that the
time evolution of the turbulent three-dimensional flow (e.g., 𝑅𝑒 = 2.8 × 106)
could be simulated at a significantly lower cost (approximately four orders of
magnitude) without a major loss in accuracy. Using the single core memory
group (CMG), our implementation shows 370 GFLOPS (24.28% of the peak
performance) for the entire training loop and 753 GFLOPS (24.28% of the
peak performance) for the convolution kernel, respectively. Our distributed
learning implementation utilized a hybrid parallelization scheme that scales
up to 25,250 computational nodes (1,212,000 cores). Thus it shows 72.9 %
of weak scaling performance and 7.8 PFLOPS for the entire training loop.
On the other hand, it shows 100.8 % of weak scaling performance and 113
PFLOPS for the convolution kernel.

Additional Key Words and Phrases: Reduced-Order Model, Turbulence,
Three-dimensional flow, Distributed machine learning, Convolutional Au-
toencoder (CAE), Long Short-Term Memory networks (LSTMs), supercom-
puter Fugaku

ACM Reference Format:
Kazuto Ando, Rahul Bale, Akiyoshi Kuroda, and Makoto Tsubokura. 2018.
Scalable reduced-order modeling for three-dimensional turbulent flow. In .
ACM, New York, NY, USA, 3 pages. https://doi.org/XXXXXXX.XXXXXXX

1 REDUCE-ORDER MODELING FOR FLOW
SIMULATION

Numerical simulation, required in industrial applications, such as
design optimization of automobile shapes and optimal control, must
be executed repeatedly by changing the conditions, such as the
model shape and in-flow velocity. The cost of such a simulation is a
major obstacle for industrial users considering the feasible size of
the computational system and the amount of computational time.
Reduced-order model (ROM) using POD in conjunction with

Galerkin projection is the major method for dimensional reduction
to reduce the calculation cost. However, it does not provide sufficient
reproduction accuracy for an advection-dominant problem, that is,
a case where nonlinearity appears strongly.

To deal with such kind of problem, a neural-network-based non-
linear dimensional reduction technique is attracting attention. Mu-
rata et al. proposed the mode-decomposing convolutional neural

SC23, November 12–17, 2023, Colorado, Denver
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in , https://doi.org/
XXXXXXX.XXXXXXX.

network autoencoder (MD-CNN-AE) [3]. In this study, this network
was extended to a three-dimensional flow field. In recent years,
there have also been examples of using a variational autoencoder
(VAE) [2], where the network is trained such that the elements of the
latent vector follow a normally distributed random variable. To deal
with high-precision 3d data, distributed learning is indispensable
in terms of memory allocation and training speed. In this study, a
scalable method for massively parallel distributed systems such as
Fugaku [4, 6] is implemented.

2 METHODS

2.1 Reduced-order model using neural network
2.1.1 1st step: Dimensional reduction. Reduce the dimension of
flow field data with an autoencoder-like neural network called “MD-
CNN-AE”. Figure 1 shows a schematic of the network structure. The
first half of the network, the encoder, inputs the high-precision flow
field snapshots and gradually reduces the dimensions as the data
passes through the layers, and it outputs the vector containing the
reduced variables, named “latent vector”.
The second half of the network, the decoder, branches for each

mode for decomposition. Each branched network inputs each el-
ement of the latent vector. Then, the data dimension is expanded
as it passes through the layers. Each branched network outputs a
decomposed flow field for each mode. Finally, these decomposed
flow fields are combined, and the flow field that reproduces the
original flow field is output. These networks are trained to minimize
the errors between the original flow field x(𝑡) and reconstructed
flow field

∑𝑟
𝑗=1 F𝑑𝑒𝑐,𝑗 ([F𝑒𝑛𝑐 (x(t))] 𝑗). This optimization problem is

formulated as

{𝝓 𝑗 }𝑟𝑗=1 = argmin
{�̃� 𝑗 }𝑟𝑗=1

∫ 𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

∥(x(𝑡) −
𝑟∑︁
𝑗=1

F𝑑𝑒𝑐,𝑗 ([F𝑒𝑛𝑐 (x(𝑡))] 𝑗)∥2𝑑𝑡,

(1)
where F𝑒𝑛𝑐 is the encoder; F𝑑𝑒𝑐,𝑗 is the decoder corresponding to
the 𝑗-th mode, and {𝝓 𝑗 }𝑟𝑗=1 is the trained network weights.

2.1.2 2nd step: Time evolution prediction. Next, another neural net-
work, “LSTM”, is harnessed for predicting the time evolution of
latent vector elements. LSTMs take the 20-time steps of the latent
vectors to step 𝜏 and predict the unknown latent vector of step 𝜏+1.
Once the LSTM is trained, using only the initial 20-time steps of the
latent vectors, it is possible to predict the following time steps up
to the last step. Finally, the trained decoder network can decode the
time series of latent vectors to the flow field snapshots.

2.2 Implementation of distributed learning
To utilize tens of thousands of computational nodes on Fugaku, a dis-
tributed parallel machine-learning environment was implemented.

1

HTTPS://ORCID.ORG/0000-0003-2123-1177
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SC23, November 12–17, 2023, Colorado, Denver Ando, et al.

3D flow field
snapshots

𝑢
𝑣

𝑤

FlattenInput

Encoder

FCNCNN +Pooling

Output

3D flow field
snapshots

Unflatten

Unflatten

+CNN +
Interpolate

𝑢
𝑣

𝑤

Decoder

Decomposed flow field
snapshots

Decomposed flow
field snapshots

Combine𝜇'

𝜎'(

𝜇(

𝜎((

𝑁(𝜇', 𝜎'()

𝑁(𝜇(, 𝜎(()

Latent
vector

ℱ*+,
ℱ-*,,.

𝒙 𝑡 $𝒙 𝑡

𝒂 𝑡 = ℱ*+, 𝒙 𝑡

ℱ-*,,/ 𝒂 𝑡 /

ℱ-*,,0 𝒂 𝑡 0

Fig. 1. Network structure for dimensional reduction.

The hybrid-parallel scheme, the combination of data parallelism that
distributes the training data and model parallelism that distributes
parts of the entire network structure, was enhanced (Figure 2).

Fig. 2. Parallelization scheme.

3 COMPUTATIONAL PERFORMANCE

3.1 Single CMG computational performance
The single-precision floating-point arithmetic with one core mem-
ory group (CMG) is shown below. The entire training loop, which
involves communications, indicates 370.31 GFLOPS (24.28% of the
peak performance). This corresponds to 1.5 TFLOPS in terms of 1
node (4 CMGs).
The convolution kernel indicates 753 TFLOPS (49.29 % of the

peak performance). This corresponds to 3.0 TFLOPS in terms of 1
node. This kernel calls the convolution routine in the Intel oneDNN
library installed by Fujitsu and Riken [1] in the DL4Fugaku project
[5].

3.2 Multi-node computational performance
Figure 3(a) show the results of the weak scaling test — that is, the
number of nodes increased while maintaining the computational
cost per node. In this case, the number of modes was increased; thus,
the number of branches in the encoder increased as the number
of nodes increased. The single-precision floating-point arithmetic
performance of the entire training procedure is 7.8 PFLOPS with
25,250 nodes (1,212,000 cores). The weak scaling performance is

72.9% (relative to 750 nodes). The forward propagation routine‘s per-
formance and the back propagation routine’s performance indicate
25.1 PFLOPS and 19.4 PFLOPS, respectively. Besides, the convolu-
tion routines show almost perfect scaling and achieve around 100
PFLOPS (Figure 3(b)).

7

(b) Convolution kernel(a) Entire training loop

Fig. 3. Weak scaling performance of (a) the entire training loop and (b) the
convolution routines. The solid line corresponds to measured values, and
the dashed line corresponds to the ideal scaling of that.

Figure 3(b) shows the result of the weak scaling test for con-
volution routines. The blue line shows the forward propagation
routine‘s performance, and the light blue and orange line shows the
back propagation routine’s performance. All of the routines show
almost perfect scaling and achieve around 100 PFLOPS.

4 REPRODUCTION OF TURBULENT FLOW FIELD BY
ROM SIMULATION

4.1 Application 1: Three-dimensional cylinder flow
(𝑅𝑒 = 1000)

The flowfield reconstructed by POD after reducing into 128 variables
does not contain small flow field structures contained in full-order
model (FOM) simulation results. However, using the same number
of variables, our method reproduces the complex vortex structures
close to those created with the FOM simulation result, especially in
spanwise velocity.Flow field reconstruction with neural network

l Reconstructed flow field after decomposing into
128 modes

10

FOM simulation Reconstruction by POD Reconstruction by our method

Streamwise
velocity

Transverse
velocity

Spanwise
velocity

Fig. 4. ROM simulation result for cylinder flow (𝑅𝑒 = 1000).

2

Scalable reduced-order modeling for three-dimensional turbulent flow SC23, November 12–17, 2023, Colorado, Denver

4.2 Application 2: Three-dimensional turbulent flow
around vehicle (𝑅𝑒 = 2.8 × 106)

The large-scale vortex, which determines the aerodynamic perfor-
mance of the vehicle body, can be successfully reproduced with
reconstruction after reducing 128 variables.

Reconstruction by our method

FOM simulation
Streamwise velocity Spanwise velocity Streamwise velocity

Vertical velocity

Streamwise velocity Spanwise velocity
Streamwise velocity

Vertical velocity

Fig. 5. ROM simulation result for flow around vehicle body (𝑅𝑒 = 2.8× 106).

4.3 How much is computational cost reduction?
Compared to the FOM, if you decompose into 20 modes, the number
of operations is reduced by five orders of magnitude. Even if you
use 400 modes, the number of operations is estimated to reduce by
3 and 4 orders of magnitude.

5 CONCLUSION
A neural network-based reduced order modeling method for three-
dimensional turbulent flow simulation was implemented as the
scalable distributed learning framework on Fugaku. It was demon-
strated that the time evolution of the turbulent three-dimensional
flow field could be simulated at a significantly lower cost (approxi-
mately three orders of magnitude) without a major loss in accuracy.
Using the single CMG, our implementation shows 370 GFLOPS
(24.28% of the peak performance) for the entire training loop and
753 GFLOPS (24.28% of the peak performance) for the convolution
kernel, respectively. Our distributed learning implementation scales
up to 25,250 computational nodes (1,212,000 cores). Thus it shows
72.9 % of weak scaling performance and 7.8 PFLOPS for the entire
training loop. On the other hand, it shows 100.8 % of weak scaling
performance and 113 PFLOPS for the convolution kernel.

REFERENCES
[1] Fujitsu. 2021. Deep Neural Network Library for AArch64.

https://github.com/fujitsu/dnnl_aarch64.
[2] Diederik P Kingma and MaxWelling. 2013. Auto-Encoding Variational Bayes. (Dec.

2013). arXiv:1312.6114v10 [stat.ML]
[3] Takaaki Murata, Kai Fukami, and Koji Fukagata. 2020. Nonlinear mode decom-

position with convolutional neural networks for fluid dynamics. Journal of Fluid
Mechanics 882 (2020), A13. https://doi.org/10.1017/jfm.2019.822

[4] R-CCS. 2021. About Fugaku. https://www.r-ccs.riken.jp/en/fugaku/about/. (Ac-
cessed on 10/07/2021).

[5] Kento Sato. 2020. DL4Fugaku: AI frameworks on Fugaku. 11th JLESC Workshop.
[6] Toshio Yoshida. 2018. Fujitsu high performance CPU for the Post-K Computer. In

Hot Chips, Vol. 30.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

3

https://arxiv.org/abs/1312.6114v10
https://doi.org/10.1017/jfm.2019.822

	Abstract
	1 Reduce-order modeling for flow simulation
	2 Methods
	2.1 Reduced-order model using neural network
	2.2 Implementation of distributed learning

	3 Computational performance
	3.1 Single CMG computational performance
	3.2 Multi-node computational performance

	4 Reproduction of turbulent flow field by ROM simulation
	4.1 Application 1: Three-dimensional cylinder flow (Re=1000)
	4.2 Application 2: Three-dimensional turbulent flow around vehicle (Re=2.8106)
	4.3 How much is computational cost reduction?

	5 Conclusion
	References

