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Abstract
Vlasiator is a popular and powerful massively parallel code
for accurate magnetospheric and solar wind plasma simu-
lations. This work provides an in-depth analysis of Vlasia-
tor, focusing on MPI performance using the Integrated Per-
formance Monitoring (IPM) tool. We show that MPI non-
blocking point-to-point communication accounts for most
of the communication time. The communication topology
shows a large number of MPI messages exchanging data in
a six-dimensional grid. We also show that relatively large
messages are used in MPI communication, reaching up to
256MB. As a communication-bound application, we found
that using OpenMP in Vlasiator is critical for eliminating
intra-node communication. Our results provide important
insights for optimizing Vlasiator for the upcoming Exascale
machines.

Keywords: Vlasiator, Performance Analysis, Profiling, MPI
ACM Reference Format:
Jennifer Faj, Jeremy J. Williams, Ivy B. Peng, Stefano Markidis
and Urs Ganse, Markus Battarbee, Yann Pfau-Kempf, Leo Kotipalo,
Minna Palmroth. 2023. MPI Performance Analysis in Vlasiator:
Unraveling Communication Bottlenecks. In Proceedings of ACM
Conference (SC ’23). ACM, New York, NY, USA, 2 pages. https://doi.
org/XXXXXXX.XXXXXXX

Introduction. Large-scale plasma simulations are critical for
understanding plasma dynamics in various plasma environ-
ments, from fusion devices and accelerators to space and as-
trophysical systems. Vlasiator [4] is one of the most powerful
and established parallel C++ codes for highly accurate simu-
lations of magnetospheric and solar wind plasmas with ap-
plication to space weather. The code uses a hybrid approach
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for the solution of plasma dynamics: a direct Vlasov solver
to solve protons’ kinetic dynamics (requiring to solve the
Vlasov equation for the distribution function) and an equa-
tion of state that assumes electrons behaving like a fluid [5].
Since the proton distribution function depends on the posi-
tion and velocity spaces (the so-called phase-space) in a 3D
Vlasiator simulation, we need a six-dimensional simulation
grid to solve the Vlasov equations for the protons. The code
is parallelized using hybrid MPI and OpenMP for inter-node
and intra-node communication. Additionally, adaptivity in
the discretization of the velocity space is required, leading to
load imbalance. Therefore, libraries are utilized to implement
adaptive mesh refinements (DCCRG [3]) and to improve the
load balance across MPI processes (Zoltan [1]). The solu-
tion of a partial differential equation with load-balancing
techniques is a formidable task, requiring advanced paral-
lelization techniques, including efficient data distribution,
communication, and memory utilization. This work aims to
provide insights into communication and the impact of load
imbalance to identify potential optimization techniques. To
achieve this, we perform an in-depth analysis of the profiling
results of the Vlasiator code using the IPM tool [2, 7].
Experiments and Analysis. The experiments are executed
on the CPU nodes of the Dardel supercomputer. Each node
comprises two AMD EPYC 7742 CPUs, for a total of 128 phys-
ical cores and 256 GB memory. We perform a Vlasiator test
simulation, modeling a magnetosphere with two grid sizes,
namely ∼ 8 ∗ 104 and ∼ 8 ∗ 105 grid cells. The simulated time
is set to model 3.1 seconds, corresponding to about 40 time
steps. To investigate MPI performance and understand the
impact of OpenMP, multi-node experiments are performed
scaling up to 16 nodes with (i) a varying number of MPI
ranks with a fixed number of OpenMP threads per rank, and
(ii) a fixed number of MPI ranks and a varying number of
OpenMP threads per rank. Table 1 shows the percentage
of communication time spent with the best configuration
in both of the aforementioned experiments, with the same
number of cores (1024) distributed differently between MPI
ranks and OpenMP threads, as well as an additional test with
a larger data set and 2048 cores. We note that MPI commu-
nication time takes between 48% and 82% of the total time,
concluding Vlasiator as a communication-bound application.
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Table 1. IPM report of selected experiments.

Grid Size AMR cells Nodes MPI OMP %Comm

85184 13308 8 512 2 82%
8 64 16 51%

830584 137696 16 128 16 48%
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Figure 1. Vlasiator breakdown of MPI calls.

This means that an optimization of the communication part
leads to a major improvement of the overall Vlasiator per-
formance, requiring a focus on communication for future
improvements. We also note that OpenMP usage is critical to
eliminate intra-node communication and improve the overall
parallel speed-up. Figure 1 shows the most used MPI func-
tions and the aggregated time spent in them. Approximately
86% of MPI function time is spent in two MPI functions:
MPI_Waitall and MPI_Barrier calls. These two calls are
synchronizing MPI calls revealing that a large amount is
spent by MPI processes waiting for the slowest processes
due to load imbalances. When looking at communication
patterns and message sizes, Figure 2 shows the communica-
tion topology (which MPI ranks communicate to each MPI
rank) with the aggregated message size. The number of mes-
sages in a six-dimensional grid and the aggregated message
size are relatively high. A closer look in Figure 3 shows the
distribution of message size relatively to the number of calls
and time spent in the functions. We observe a wide range of
message sizes, ranging from a few bytes to 256MB, and a sig-
nificant amount of time being spent in exchanging messages
between 16MB-64MB.
Conclusions. In this work, we analyzed the MPI perfor-
mance of the plasma simulation code Vlasiator, using the low-
overhead IPM tool.We showed that Vlasiator is a communica-
tion-bound application, with communication percentages
varying from 48% to 82% of the total time. We found that
OpenMP is critical to eliminate intra-node communication
and improve the overall performance of the code. MPI non-
blocking point-to-point communication accounts for most of
the Vlasiator communication. In particular, the time spent in
the MPI_Waitall non-blocking point-to-point synchroniza-
tion function is the largest, with the collective MPI_Barrier
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Figure 2. Vlasiator communication topology.
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Figure 3. Breakdown of calls (histogram) and time spent
(dots) with different MPI message buffer sizes.

also playing a non-negligible part. We note that the costs
for these functions are associated with synchronization and
process imbalance costs [6]. The Vlasiator communication
topology shows several MPI messages of relatively large size,
up to 256MB. Possible Vlasiator optimizations require an
in-depth analysis of load imbalance sources causing the cur-
rent Vlasiator simulation to wait at synchronization points.
Additional promising optimizations include an increased
integration of OpenMP and MPI.
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