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CONTEXT

Reverse Time Migration (RTM) is a seismic imaging technique that presents significant 

computational challenges, requiring hundreds of gigabytes of memory and processing 

times that can take several days. RTM can be a critical component of a Full Waveform 

Inversion (FWI) solution.

Our RTM implementation processes three-dimensional fields decomposed across multiple 

NVIDIA GPUs and uses the Revolve algorithm as an optimizing checkpointing strategy. 

However, storing checkpoints in host memory and transferring data between the host and 

GPU becomes a bottleneck. We propose a checkpoint prefetching mechanism and GPU 

data compression to alleviate this bottleneck. The experimental results show that we can 

significantly improve performance, with a speedup of 1.98x – 2.53x in our current 

benchmark dataset.

REVERSE TIME MIGRATION (RTM)

Reverse Time Migration (RTM) is a powerful technique used in seismic imaging to generate 

images from seismic surveys as illustrated in the figure below. At a high level, the RTM 

algorithm involves solving the wave equation by discretizing the wave pulse into a series of 

timesteps.

During the forward phase, 

the wave propagation is 

computed in a forward-in-

time manner. 

Subsequently, the 

backward phase is 

initiated, where the same 

timesteps are processed 

in reverse, enabling the 

correlation of forward and 

backward data to generate 

the final image. Figure 1. Diagram of a seismic survey with an explanation of how the 

recorded data is computed using RTM.

TRADITIONAL CHECKPOINTING

Checkpointing is a technique that involves saving certain points of computation during the 

forward phase to prevent having to redo them during the backward phase. As checkpoint 

data requires a lot of memory storage, we use the memory of the host, once the GPU 

memory capacity in our setup is limited to 32 GB.

However, the data transfer between the GPU memory and the host memory creates a 

bottleneck, directly impacting the overall performance. Checkpointing is managed by the 

Revolve algorithm, which defines the number of checkpoints and acts as a controller for our 

application.

Figure 2. Checkpointing architecture diagram

CHECKPOINT PREFETCHING 

Checkpoint Prefetching takes advantage of Revolve's checkpoint reuse to reduce the 

frequency of data transfers. To minimize the intensive memory copy between the host and 

GPU, we introduced a GPU dual buffer data structure capable of storing the two most 

recently used checkpoints on the GPU side.

However, Revolve sometimes requires checkpoints older than those in the dual buffer, thus 

resulting in "buffer misses". These misses necessitate transfers from the host to the GPU, 

which can be slow.

To address this, we took advantage of Revolve's cheap and deterministic nature. By dry-

running Revolve, we traced the iterations where buffer misses would occur. 

We then schedule asynchronous host-to-GPU data transfers ahead of time, a process we 

refer to as prefetching. This proactive approach further optimizes the checkpointing 

process, avoiding around 75% of buffer misses, minimizing GPU idle time, and enhancing 

overall application performance.

Figure 3. Checkpoint Prefetching Architecture

CHECKPOINT DATA COMPRESSION

To further improve overall performance, we proposed a data compression technique that 

reduces data transfer through PCI-e and mitigates buffer misses' effects. Our optimization 

goal is to ensure that compression, decompression, and transferring of compressed data 

take less time than the current buffer misses.

We employ cuZFP, an open-source library that performs lossy compression on GPUs. 

cuZFP supports fixed-rate compression, allowing users to specify a maximum number of 

bits per value during the float point quantization phase. A compression ratio of 4 (or 8 bits 

per value) strikes a favorable balance between enhanced performance and quality loss.

The compression is seamlessly integrated into the prefetching implementation. Checkpoint 

data is compressed and then stored in the buffer and then in the host memory. When it is 

needed for computation, compressed data is brought from the host memory to the GPU and 

decompressed.

Figure 4. Checkpoint Prefetching with Compression Architecture

EXPERIMENTAL RESULTS

In our experimental setup, we examined three profiles (Checkpointing, Prefetching, and 

Prefetching with  Compression) on three datasets (Salt, Marmousi, and Large), using 

"Checkpointing" as our baseline. 

The results demonstrate notable speedup for Prefetching (around 1.42x) and even greater 

improvement for Prefetching + Compression (ranging from 1.98x to 2.53x). For example, 

the Salt dataset's execution time was reduced from approximately 33 hours to 15 hours with 

Prefetching + Compression.

Prefetching reduces data transferred from the host to the GPU by 4x. When combined with 

compression, host-to-device transfers can be reduced by 16x compared to the traditional 

checkpointing implementation, when using a compression rate of 4.

Speedup

Figure 5. Chart comparing speedup of the proposed enhancements with respect to traditional checkpointing.
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Figure 6. Host-to-device (h2d) and device-to-host (d2h) data transfer through PCI-e

The degradation in the final rendered image caused by lossy compression is hardly 

noticeable to the human eye. The images below show the migration results of both the 

baseline execution without compression and the execution using compression.

Prefetching + Compression

Traditional Checkpointing (baseline)

(a)

(b)

Figure 7. Comparison of Marmousi migrated images. (a) baseline, and (b) prefetching+compression.

Dataset ABS PSNR

Salt 7.73 74.67

Marmousi 18.68 87.54

Large 3.99 55.97

Table 1. Average absolute error and Peak Signal-to-Noise Ratio from baseline and prefetching+compression.
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