
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Introducing Prefetching and Data Compression to Accelerate Checkpointing for Inverse

Seismic Problems
Thiago Maltempi1, Sandro Rigo1, Marcio Pereira¹, Hervé Yviquel¹, Jessé Costa² and Guido Araujo1

1 Computer Systems Laboratory, University of Campinas (UNICAMP) ²Faculty of Geophysics, Pará Federal University

CONTEXT

Reverse Time Migration (RTM) is a seismic imaging technique that presents significant

computational challenges, requiring hundreds of gigabytes of memory and processing

times that can take several days. RTM can be a critical component of a Full Waveform

Inversion (FWI) solution.

Our RTM implementation processes three-dimensional fields decomposed across multiple

NVIDIA GPUs and uses the Revolve algorithm as an optimizing checkpointing strategy.

However, storing checkpoints in host memory and transferring data between the host and

GPU becomes a bottleneck. We propose a checkpoint prefetching mechanism and GPU

data compression to alleviate this bottleneck. The experimental results show that we can

significantly improve performance, with a speedup of 1.98x – 2.53x in our current

benchmark dataset.

REVERSE TIME MIGRATION (RTM)

Reverse Time Migration (RTM) is a powerful technique used in seismic imaging to generate

images from seismic surveys as illustrated in the figure below. At a high level, the RTM

algorithm involves solving the wave equation by discretizing the wave pulse into a series of

timesteps.

During the forward phase,

the wave propagation is

computed in a forward-in-

time manner.

Subsequently, the

backward phase is

initiated, where the same

timesteps are processed

in reverse, enabling the

correlation of forward and

backward data to generate

the final image. Figure 1. Diagram of a seismic survey with an explanation of how the

recorded data is computed using RTM.

TRADITIONAL CHECKPOINTING

Checkpointing is a technique that involves saving certain points of computation during the

forward phase to prevent having to redo them during the backward phase. As checkpoint

data requires a lot of memory storage, we use the memory of the host, once the GPU

memory capacity in our setup is limited to 32 GB.

However, the data transfer between the GPU memory and the host memory creates a

bottleneck, directly impacting the overall performance. Checkpointing is managed by the

Revolve algorithm, which defines the number of checkpoints and acts as a controller for our

application.

Figure 2. Checkpointing architecture diagram

CHECKPOINT PREFETCHING

Checkpoint Prefetching takes advantage of Revolve's checkpoint reuse to reduce the

frequency of data transfers. To minimize the intensive memory copy between the host and

GPU, we introduced a GPU dual buffer data structure capable of storing the two most

recently used checkpoints on the GPU side.

However, Revolve sometimes requires checkpoints older than those in the dual buffer, thus

resulting in "buffer misses". These misses necessitate transfers from the host to the GPU,

which can be slow.

To address this, we took advantage of Revolve's cheap and deterministic nature. By dry-

running Revolve, we traced the iterations where buffer misses would occur.

We then schedule asynchronous host-to-GPU data transfers ahead of time, a process we

refer to as prefetching. This proactive approach further optimizes the checkpointing

process, avoiding around 75% of buffer misses, minimizing GPU idle time, and enhancing

overall application performance.

Figure 3. Checkpoint Prefetching Architecture

CHECKPOINT DATA COMPRESSION

To further improve overall performance, we proposed a data compression technique that

reduces data transfer through PCI-e and mitigates buffer misses' effects. Our optimization

goal is to ensure that compression, decompression, and transferring of compressed data

take less time than the current buffer misses.

We employ cuZFP, an open-source library that performs lossy compression on GPUs.

cuZFP supports fixed-rate compression, allowing users to specify a maximum number of

bits per value during the float point quantization phase. A compression ratio of 4 (or 8 bits

per value) strikes a favorable balance between enhanced performance and quality loss.

The compression is seamlessly integrated into the prefetching implementation. Checkpoint

data is compressed and then stored in the buffer and then in the host memory. When it is

needed for computation, compressed data is brought from the host memory to the GPU and

decompressed.

Figure 4. Checkpoint Prefetching with Compression Architecture

EXPERIMENTAL RESULTS

In our experimental setup, we examined three profiles (Checkpointing, Prefetching, and

Prefetching with Compression) on three datasets (Salt, Marmousi, and Large), using

"Checkpointing" as our baseline.

The results demonstrate notable speedup for Prefetching (around 1.42x) and even greater

improvement for Prefetching + Compression (ranging from 1.98x to 2.53x). For example,

the Salt dataset's execution time was reduced from approximately 33 hours to 15 hours with

Prefetching + Compression.

Prefetching reduces data transferred from the host to the GPU by 4x. When combined with

compression, host-to-device transfers can be reduced by 16x compared to the traditional

checkpointing implementation, when using a compression rate of 4.

Speedup

Figure 5. Chart comparing speedup of the proposed enhancements with respect to traditional checkpointing.

0

20

40

60

80

100

120

140

Checkpointing Prefetching Prefetching +
Compression

Checkpointing Prefetching Prefetching +
Compression

Checkpointing Prefetching Prefetching +
Compression

Salt Salt Salt Marmousi Marmousi Marmousi Large Large Large

T
e
ra

b
y
te

s

h2d

d2h

Figure 6. Host-to-device (h2d) and device-to-host (d2h) data transfer through PCI-e

The degradation in the final rendered image caused by lossy compression is hardly

noticeable to the human eye. The images below show the migration results of both the

baseline execution without compression and the execution using compression.

Prefetching + Compression

Traditional Checkpointing (baseline)

(a)

(b)

Figure 7. Comparison of Marmousi migrated images. (a) baseline, and (b) prefetching+compression.

Dataset ABS PSNR

Salt 7.73 74.67

Marmousi 18.68 87.54

Large 3.99 55.97

Table 1. Average absolute error and Peak Signal-to-Noise Ratio from baseline and prefetching+compression.

FOLLOW UP

Scan the QR code or visit geospeed.gitlab.io/gpuzip_sc23 for

detailed multimedia content about our technique and results.

	Slide 1

