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1 INTRODUCTION

Reverse Time Migration (RTM) [1] is a Seismic Imaging technique that poses significant computational challenges,
often involving hundreds of gigabytes of memory requirements and lengthy processing times lasting several days. RTM
can be a critical component of a Full Waveform Inversion (FWI) solution. The RTM algorithm solves the wave equation
by discretizing the pulse into a series of “timesteps”. During the forward phase, the wave propagation is computed
forward in time. Subsequently, the backward phase is initiated, where the same timesteps are processed in reverse,
enabling the correlation of forward and backward data to generate the final image.

Our RTM implementation processes three-dimensional fields on NVIDIA GPUs incorporating domain decomposition
across up to four GPU devices and uses the Revolve algorithm [3] for an optimized checkpointing strategy. The
traditional checkpointing approach saves the checkpointing data into the host memory. It retrieves it from the host
when demanded, introducing a notable performance bottleneck and making GPU idle while it waits for data transfer.

Our research introduces a prefetching mechanism to address this issue, anticipating memory transfers and applying
compression to checkpoint data. Our experimental results demonstrate notable speedup for Prefetching (around 1.42x)
and even greater improvement for Prefetching + Compression (ranging from 1.98 to 2.53x). Prefetching reduces data
transferred from the host to the GPU by 4x due to the Checkpointing Buffer. When combined with compression,
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host-to-device transfers can be reduced by 16x compared to the traditional checkpointing implementation, thanks to
the compression rate of 4.

There are attempts at using data compression to improve performance on scientific data and inverse problem
solutions[2, 4, 6] but, to the best of our knowledge, this is the first work to propose a prefetching technique combined
with checkpoint data compression inside the GPU.

2 METHODOLOGY AND EXPERIMENTAL RESULTS

The goal is to speed up checkpointing by introducing a double buffer combined with a prefetching mechanism and
adding compression to the data stored in GPU. The Revolve algorithm [3] is specifically designed to address this type
of problem. Revolve is a classic checkpoint implementation that optimally solves the problem of determining which
checkpoints should be stored to get the best trade-off between memory consumption and re-computation. It is used as a
controller for the application, commanding it to perform specific actions at each timestep.

Our main insight is that Revolve is deterministic, and its computational cost is negligible if compared to the main
application. So, we designed a mechanism that runs Revolve before the main solver, recording its command actions and
identifying situations when the desired data would not be in the local buffer. For those cases, if possible, we configure a
prefetch operation, dispatching a load from host memory a few timesteps before the data is needed, so it will be in
the local buffer when Revolve asks for restoring it during the main loop execution. This mechanism can anticipate, on
average, 75 % of the host-to-device memory transfers in our test cases.

On top of prefetching, we added data compression to the GPU buffer. We integrated the cuZFP[5] compression
library into our application, so every transfer between host and device uses only compressed data. This strategy reduced
the amount of data transferred through PCI-e up to 16x and brought speedups from 1.9x to 2.5x. Table 1 summarizes
quality metrics for images generated using compressed and uncompressed data. Two sample images from the Marmousi
dataset are displayed in Figure 1.

(a) Traditional Checkpointing (baseline) (b) Prefetching + Compression

Fig. 1. A comparison of the migrated image for the Marmousi dataset with our baseline implementation (a), and prefetching +
compression (b).

Dataset ABS PSNR
Salt 7.73 74.67
Marmousi 18.68 87.54
Large 3.99 55.97

Table 1. CompressionQuality Evaluation for our Datasets.
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