
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Introducing Prefetching and Data Compression to Accelerate Checkpointing for
Inverse Seismic Problems

THIAGO MALTEMPI∗, SANDRO RIGO∗, MARCIO PEREIRA, and HERVÉ YVIQUEL, Computer

Systems Laboratory (LSC), University of Campinas (UNICAMP), Brazil

JESSÉ COSTA, Faculty of Geophysics, Pará Federal University, Brazil

ALAN SOUZA, CENPES Petrobras, Brazil

GUIDO ARAUJO, Computer Systems Laboratory (LSC), University of Campinas (UNICAMP), Brazil

CCS Concepts: • Computing methodologies → Parallel computing methodologies; • Applied computing → Earth and
atmospheric sciences.

Additional Key Words and Phrases: seismic application, checkpointing, compression, prefetching

ACM Reference Format:
Thiago Maltempi, Sandro Rigo, Marcio Pereira, Hervé Yviquel, Jessé Costa, Alan Souza, and Guido Araujo. 2018. Introducing Prefetching
and Data Compression to Accelerate Checkpointing for Inverse Seismic Problems. In . ACM, New York, NY, USA, 3 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Reverse Time Migration (RTM) [1] is a Seismic Imaging technique that poses significant computational challenges,
often involving hundreds of gigabytes of memory requirements and lengthy processing times lasting several days. RTM
can be a critical component of a Full Waveform Inversion (FWI) solution. The RTM algorithm solves the wave equation
by discretizing the pulse into a series of “timesteps”. During the forward phase, the wave propagation is computed
forward in time. Subsequently, the backward phase is initiated, where the same timesteps are processed in reverse,
enabling the correlation of forward and backward data to generate the final image.

Our RTM implementation processes three-dimensional fields on NVIDIA GPUs incorporating domain decomposition
across up to four GPU devices and uses the Revolve algorithm [3] for an optimized checkpointing strategy. The
traditional checkpointing approach saves the checkpointing data into the host memory. It retrieves it from the host
when demanded, introducing a notable performance bottleneck and making GPU idle while it waits for data transfer.

Our research introduces a prefetching mechanism to address this issue, anticipating memory transfers and applying
compression to checkpoint data. Our experimental results demonstrate notable speedup for Prefetching (around 1.42x)
and even greater improvement for Prefetching + Compression (ranging from 1.98 to 2.53x). Prefetching reduces data
transferred from the host to the GPU by 4x due to the Checkpointing Buffer. When combined with compression,

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0009-0007-9970-8197
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Maltempi and Rigo, et al.

host-to-device transfers can be reduced by 16x compared to the traditional checkpointing implementation, thanks to
the compression rate of 4.

There are attempts at using data compression to improve performance on scientific data and inverse problem
solutions[2, 4, 6] but, to the best of our knowledge, this is the first work to propose a prefetching technique combined
with checkpoint data compression inside the GPU.

2 METHODOLOGY AND EXPERIMENTAL RESULTS

The goal is to speed up checkpointing by introducing a double buffer combined with a prefetching mechanism and
adding compression to the data stored in GPU. The Revolve algorithm [3] is specifically designed to address this type
of problem. Revolve is a classic checkpoint implementation that optimally solves the problem of determining which
checkpoints should be stored to get the best trade-off between memory consumption and re-computation. It is used as a
controller for the application, commanding it to perform specific actions at each timestep.

Our main insight is that Revolve is deterministic, and its computational cost is negligible if compared to the main
application. So, we designed a mechanism that runs Revolve before the main solver, recording its command actions and
identifying situations when the desired data would not be in the local buffer. For those cases, if possible, we configure a
prefetch operation, dispatching a load from host memory a few timesteps before the data is needed, so it will be in
the local buffer when Revolve asks for restoring it during the main loop execution. This mechanism can anticipate, on
average, 75 % of the host-to-device memory transfers in our test cases.

On top of prefetching, we added data compression to the GPU buffer. We integrated the cuZFP[5] compression
library into our application, so every transfer between host and device uses only compressed data. This strategy reduced
the amount of data transferred through PCI-e up to 16x and brought speedups from 1.9x to 2.5x. Table 1 summarizes
quality metrics for images generated using compressed and uncompressed data. Two sample images from the Marmousi
dataset are displayed in Figure 1.

(a) Traditional Checkpointing (baseline) (b) Prefetching + Compression

Fig. 1. A comparison of the migrated image for the Marmousi dataset with our baseline implementation (a), and prefetching +
compression (b).

Dataset ABS PSNR
Salt 7.73 74.67
Marmousi 18.68 87.54
Large 3.99 55.97

Table 1. CompressionQuality Evaluation for our Datasets.

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Introducing Prefetching and Data Compression to Accelerate Checkpointing for Inverse Seismic ProblemsConference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] E. Baysal, D. D. Kosloff, and J. W.C. Sherwood. 1983. Reverse time migration. Geophysics 48, 11 (1983), 1514–1524. https://doi.org/10.1190/1.1441434
[2] M Dmitriev, T Tonellot, HJ AlSalem, and S Di. 2022. Error-Bounded Lossy Compression in Reverse Time Migration. In Sixth EAGE High Performance

Computing Workshop, Vol. 2022. EAGE Publications BV, 1–5.
[3] Andreas Griewank and Andrea Walther. 2000. Algorithm 799: Revolve: An Implementation of Checkpointing for the Reverse or Adjoint Mode of

Computational Differentiation. ACM Trans. Math. Softw. 26, 1 (mar 2000), 19–45. https://doi.org/10.1145/347837.347846
[4] Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, Paul Hovland, and Gerard Gorman. 2019. Combining Checkpointing and Data Compression to

Accelerate Adjoint-Based Optimization Problems. In Euro-Par 2019: Parallel Processing, Ramin Yahyapour (Ed.). Springer International Publishing,
Cham, 87–100.

[5] Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014),
2674–2683. https://doi.org/10.1109/TVCG.2014.2346458

[6] Jingcheng Shen, Linbo Long, Xin Deng, Masao Okita, and Fumihiko Ino. 2023. A compression-based memory-efficient optimization for out-of-core
GPU stencil computation. The Journal of Supercomputing (20 Feb 2023). https://doi.org/10.1007/s11227-023-05103-8

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

3

https://doi.org/10.1190/1.1441434
https://doi.org/10.1145/347837.347846
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1007/s11227-023-05103-8

	Abstract
	1 Introduction
	2 Methodology and Experimental Results
	References

