
© 2022 Chevron. All rights reserved. COMPANY CONFIDENTIAL. Subsurface Forum 2022

Software Development Case Study:

The Acceleration of a Distributed

Application using GPUs

Martin Kuhnel (Chevron)

Alex Loddoch, Tao Sun

ABSTRACT
We present a practical approach for the acceleration of an industrial

and scientific application using graphics processing units (GPUs).

Our original application is a computational stratigraphy codebase

that couples fluid flow and sediment deposition submodels. The

application uses domain decomposition and a halo exchange to

split the workload among multiple workers in a distributed system.

Our methodology abstracts and conserves the host data structures

while re-writing computational elements in the GPU programming

language CUDA. Utilizing high performance GPU machines in the

Azure cloud, we show a minimum 90x speedup compared to a high-

end CPU based cluster. In this poster, we give a brief description of

the original algorithm, followed by a discussion of required software

changes and additions. Although this case study focuses on a

specific example, we hope this approach inspires similar efforts in

other applications.

Inputs and Setup

Domain

Decomposition

with MPI

Flow and

Sediment Flux

Calculations and

Update

File Outputs

Index Mapping and

Host-to-Device

Copies

Check Memory

Buffer

Device-to-Host

Copies

Rank

synchronization

Figure 1: An “In-Place” Approach

With our added index mapping and memory

buffer, we conserve the input and output,

domain decomposition, and CPU data

structures. Meanwhile, we use the GPU for the

compute-intensive flow and sediment flux

calculations with minimal communication to

the host.

New Sections
Sections Rewritten

in CUDA

This document is intended only for use by Chevron for presentation at the SC23.

No portion of this document may be copied, displayed, distributed, reproduced,

published, sold, licensed, downloaded, or used to create a derivative work, unless

the use has been specifically authorized by Chevron in writing.

1 STARTING POINT
• Our goal is to accelerate a proprietary geology modelling

application termed CompStrat [1], which models the flow of

sediment-carrying water through a basin.

• The application uses a finite volume spatial discretization scheme,

computing the flow and sediment fluxes for each cell.

• The flux calculations can be done in parallel if information about

neighbors is kept up to date which is done via MPI.

2 GPU ACCELERATION APPROACH
• Requires porting the computation to CUDA kernels [2].

• A full rewrite can potentially generate the most performant code

but is not viable from a time-to-production standpoint.

• Individual kernel swaps suffer in performance due to excessive

copies between the host and device.

• Our final approach is "in-place“ and preserves the original code

structure, while being GPU-native for the computational heavy

simulation. See Figure 1.

3 DOMAIN MAPPING
• To maintain compatibility with the original data structures, the

domain is abstracted on the GPU using index maps.

• The domain on the GPU is simply represented in directly indexed

arrays of data that are mapped via indices to their type,

neighbors, and to their location back on the host. See Figure 2.

4 MEMORY BUFFER
• GPU cards have limited memory that cannot contain the entire

growing sediment grid.

• We introduce a fixed-size GPU buffer containing the top layers in

our sediment columns which resynchronizes only when needed.

5 HALO EXCHANGE
• We assign one MPI rank to one available GPU, using the PCI bus

topology to make optimal selections.

• We can use the MPI structure of original CPU code by copying

the data in the halo back to the host.

• Depending on the hardware available, the halo exchange can be

accelerated with the use of NVLink, which we use via the NCCL

library to perform GPU-to-GPU transfers [3]. See Figure 3.

6 RESULTS
• The results for five internal benchmarks are shown in Figure 4.

• Simulations originally taking multiple weeks on upwards of 40

nodes can now be run over the weekend on a single GPU node.

7 FUTURE WORK
• Since memory is no longer distributed over many nodes, we will

implement a new memory management system.

• We will also apply this approach to other similar applications.

References
[1] Lisa Goggin Maisha Amaru, Tao Sun and Ashley Harris. 2017. Integration of computational stratigraphy

models and seismic data for subsurface characterization. The Leading Edge 36, 11 (November 2017).

https://doi.org/10.1190/tle36110947a1.1

[2] NVIDIA 2023. CUDA Toolkit Documentation 12.2 Update 1. NVIDIA. https://docs.nvidia.com/cuda/.

[3] NVIDIA [n. d.]. NVIDIA Collective Communication Library (NCCL) Documentation. NVIDIA.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs.

Figure 3: Multiple Paths for Halo Exchange

Each GPU computes a portion of the domain with an

overlapping halo with its neighbors. The data transfer of

the halo can either be done through the PCI links (red

arrow) or through the faster and more efficient NVLink

(green arrow).

Figure 2: GPU Domain Layout

The GPU works in an abstracted

domain with directly indexed arrays.

For example, an active cell is

represented as an index to its location

in larger arrays containing all cell data.

Similarly, special types of cells and

neighbors are mapped to their data

and location in other spaces.

Figure 4: Benchmark Results

The speed of the simulation for various internal benchmarks

is given in iterations per hour on a given SKU. The CPU code

ran on 32 Azure HBv3 nodes with 120 AMD CPU cores each.

The GPU codes ran on the Azure ND96 SKUs with 8 A100

GPUs. The new GPU code with NCCL runs approximately 100

times faster than the original.

An example flow output from a CompStrat simulation

https://doi.org/10.1190/tle36110947a1.1

	Slide 1

