ABSTRACT

We present a practical approach for the acceleration of an industrial
and scientific application using graphics processing units (GPUs). |
Our original application is a computational stratigraphy codebase S ft D I m t C St d -
that couples fluid flow and sediment deposition submodels. The : 0 Wa re eve O p e n a Se u y‘
application uses domain decomposition and a halo exchange to |

it the workioad among mlple workers n ditibuted system The Acceleration of a Distributed
Application using GPUs

while re-writing computational elements in the GPU programming
language CUDA. Utilizing high performance GPU machines in the
Azure cloud, we show a minimum 90x speedup compared to a high-
end CPU based cluster. In this poster, we give a brief description of
the original algorithm, followed by a discussion of required software
changes and additions. Although this case study focuses on a
specific example, we hope this approach inspires similar efforts in
other applications.

1 STARTING POINT

Our goal is to accelerate a proprietary geology modelling
application termed CompStrat [1], which models the flow of
sediment-carrying water through a basin.

* The application uses a finite volume spatial discretization scheme,
computing the flow and sediment fluxes for each cell.

* The flux calculations can be done in parallel it information about
neighbors is kept up to date which is done via MPI.

‘ An example flow output from a CompStrat simulation

2 GPU ACCELERATION APPROACH

* Requires porting the computation to CUDA kernels [2].
« A full rewrite can potentially generate the most performant code
but is not viable from a time-to-production standpoint.

- Individual kernel swaps suffer in performance due to excessive ! A ‘ Figure 1: An “In-Place” Approach GFU 1 |
copies between the host and device. Inputs and Setup . . Domain
* Qur final approach is "in-place” and preserves the original code \. J
structure, while being GPU-native for the computational heavy . l . in CUDA I
simulation. See Figure 1 Domam _ With our added index mapping and memory “ru
3 DOMAIN MAPPING Def/i/)itt?wpl\(;ISPrluon guffer{ vvj conserve the inp(tjjt and(;)utput, | | \
« To maintain compatibility with the original data structures, the \ / st?&i&?eseli;l)ergasvsrﬁign\l/vaenusgEc)k?e GathJ tor the PCI Links MVLInk —» x } Halo
domain is abstracted on the GPU using index maps. . com ute—intensive ﬂolvv and sediment flux
* The domain on the GPU is simply represented in directly indexed Index Mapping and | FT i A minima tion ¢
arrays of data that are mapped via indices to their type, Host-to-Device tCseCEjSLOnS With finimat Communication to cCPU 2
neighbors, and to their location back on the host. See Figure 2. Copies | |
4 MEMORY BUFFER :
« GPU cards have limited memory that cannot contain the entire Fiqure 3: Multiole Paths for Halo Exchange f GFU S ‘ Figure 4: Benchmark Results
growing sediment grid. Check Memory J ' P 9 The speed of the simulation for various internal benchmarks
« We introduce a fixed-size GPU buffer containing the top layers in Buffer Each GPU computes a portion of the domain with an Is given in iterations per hour on a given SKU. The CPU code
our sediment columns which resynchronizes only when needed. overlapping halo with its neighbors. The data transfer of ran on 32 Azure HBv3 nodes with 120 AMD CPU cores each.
the halo can either be done through the PCl links (red The GPU codes ran on the Azure ND96 SKUs with 8 A100
5 HALO EXCHANGE arrow) or through the faster and more efficient NVLink GPUs. The new GPU code with NCCL runs approximately 100
* We assign one MPI rank to one available GPU, using the PCl bus Flow and (green arrow). times faster than the original.

topology to make optimal selections.

- We can use the MPI structure of original CPU code by copying Comparing Simulation Speeds of Different Implementations

Sediment Flux

the data in the halo back to the host. Calculations and Figure 2: GPU Domain Layout ‘ 1,000k 103x
- i i Update .
Depending on the hardware aveylable, the halo exchange can be P The GPU works in an abstracted e
|a;celer?ted V\]ilth tthuSetofGNP\(Jthnk, V\]/ch|ch[z\%/}/esuseF\{|a the3NCCL domain with directly indexed arrays. 3 00k 0o
ibrary to perform -to- ransfers [3]. See Figure 3. - : . S5 D
For example, an ac.t|ve cell S | Halo Map Tnlet 3 9
represented as an index to its location < & 95x 96x
6 RESULTS Rank in larger arrays containing all cell data. 38 2 600k
* The results for five internal benchmarks are shown in Figure 4. synchronization Similarly, special types of cells and Bounda < 3
« Simulations originally taking multiple weeks on upwards of 40 neighbors are mapped to their data M ol S 2
nodes can now be run over the weekend on a single GPU node. and location in other spaces. v Py 2 400k
S
- O ©
7 EUTU RE WORK o | Device-to-Host Active Cell Map | 8o S5y 53y 28y
» Since memory is no longer distributed over many nodes, we will Cobn a) 200k 23X 24x
implement a new memory management system. OPIES
« We will also apply this approach to other similar applications. o X 1 X X X
SmallBasin Carbonate38 Carbonate45 Clifftest LargeBasin2
References : Yy v v v v v v v v v
| S | | | | File Outputs B GPU 1XND96 (NCCL) 951k 832k 769k 643k 637k
[1] Lisa Goggin Maisha Amaru, Tao Sun and Ashley Harris. 2017. Integration of computational stratigraphy
models and seismic data for subsurface characterization. The Leading Edge 36, 11 (November 2017). GPU 2xND96 (MPI) 197k 203k 207k 153k 158k
?Zt]tpNSzI/[()jI(,)Al\gqu/;.OgEjgggtlﬁssug%gca&lentation 12.2 Update 1. NVIDIA. https://docs.nvidia.com/cuda/. This document is intended only for use by Chevron for presentation at the SC23. All Cell Dat W CPU 32xHBv3 9.3k 7.3k 7.6k 6.8k 6.7k
3] NVIDIA [n. d]. NVIDIA Collective Communication Library (NCCL) Documentation. NVIDIA. Sfbﬁggzgnsgfjh;fcgr?g dngtwr:%yagg dc,ooprliile j'ig'i{jadt'ed;Sgé?i‘faiidv'erjvp;fkf":Cnelg'ss cli Dala -

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs. the use has been specifically authorized by Chevron in writing.

https://doi.org/10.1190/tle36110947a1.1

	Slide 1

