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ABSTRACT
We present a practical approach for the acceleration of an industrial
and scientific application using graphics processing units (GPUs).
Our original application is a computational stratigraphy codebase
that couples fluid flow and sediment deposition submodels. The
application uses domain decomposition and a halo exchange to
split the workload among multiple workers in a distributed system.
Our methodology abstracts and conserves the host data structures
while re-writing computational elements in the GPU programming
language CUDA. Utilizing high performance GPU machines in the
Azure cloud, we show a minimum 90x speedup compared to a high-
end CPU based cluster. In this poster, we give a brief description
of the original algorithm, followed by a discussion of required
software changes and additions. Although this case study focuses
on a specific example, we hope this approach inspires similar efforts
in other applications.
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1 POSTER SUMMARY
1.1 Starting Point
Our goal is to accelerate a proprietary geology modelling applica-
tion termed CompStrat [1][4]. The application models the flow of
sediment-carrying water through a basin over a large time frame.
The flow of this water erodes and deposits different types of sed-
iments over the course of the simulation, creating stratigraphic
layers throughout the basin. The current algorithmic approach uses
a finite volume spatial discretization scheme, usually in the form of
a Cartesian grid, computing the flow and sediment fluxes while up-
dating a column of deposited sediments for each cell. This process
is repeated for upwards of ten million iterations with a variable
time step.

Since each cells’ computation is independent of the others, the
flux calculations can be done in parallel as long as information
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about neighbors is kept up to date among workers. The original
parallelization scheme uses MPI to perform domain decomposition,
splitting the grid among multiple ranks, and to perform the halo
exchange and synchronization of the workers. The application in
this state is compute-bound, as the flux calculations can be com-
putationally difficult and must be repeated for each cell, edge, and
sediment type. The goal of our work is to run this workload on
GPUs which offer more parallelism and can accelerate the large
computational bottleneck.

1.2 Past Software Development Hurdles
Running this complex workload, mostly consisting of C++ code, on
NVIDIA GPUs requires porting the computation to CUDA kernels
and managing GPU memory [3]. This effort requires a good under-
standing of the existing data structures, computation, and message
passing systems. Two past approaches provide insights into some
of the hurdles this development encounters.

One approach is to rewrite the application to be entirely GPU
native. This approach can potentially generate the most performant
code, but is not viable from a time-to-production standpoint. Not
only does it require more code to be written, it is also difficult to test
against the original code and requires more work to be compatible
with original input and output standards. Additionally, any new
developments made in the original code will have to be added to
the new replacement.

The second approach is to kernel swap the computationally
intense flux calculations. While this approach conserves a large
portion of the original application and is easy to unit test, it suffers
in performance due to the excessive device copies. Each iteration
requires moving data to the GPU for compute and back to the host
for bookkeeping. This approach benefits from being "in-place" and
preserving the original code structure, but needs to be expanded to
be more GPU native.

1.3 GPU Acceleration Approach
Our final approach is a compromise between these two strategies.
In order to preserve the reliability and compatibility benefits of the
in-place approach, we make sure to keep all setup, input and output,
and CPU data structures constant during development. The GPU
intakes all necessary data into its own data structures which are
abstracted from the existing host structures. The GPU will be able
to run the entire compute heavy simulation with minimal commu-
nication to the host and we can take full advantage of its parallelism.
This also allows for faster and easier unit tests: as kernels are de-
veloped and integrated, the code can be directly compared to the
original algorithm.
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1.4 Domain Mapping
One crucial development tomaintain compatibility with the original
data structures is abstracting the domain and its decomposition.
Our goal is to allow for radical domain changes to be integrated
using C++ in the original codebase without the need to change the
new GPU code. Before moving data to the GPU at the start of the
simulation, these index maps are generated by looping through
the host domain. Information for each cell such as the location of
its neighbors is parsed from the CPU structures and appended to
arrays that will be copied to the GPU. Therefore, the GPU no longer
concerns itself with the shape or decomposition of the domain.
Instead the GPU works in directly indexed arrays that are mapped
to one another. A GPU kernel can simply act in parallel on all of
the active cells and retrieve the state, location, and neighbors of
those cells from larger arrays that contain the data of all cells.

1.5 Memory Buffer
While the simulation remains GPU native for the entirety of the
computational work, it must deal with the limitation posed by GPU
memory. GPU cards have far lessmemory available than the original
CPU nodes and therefore cannot contain the entire sediment grid,
which grows as material is deposited. To solve this issue, the GPU
only works on a buffer of a fixed size containing anywhere from
ten to ten thousand of the top layers in our sediment columns.
When the buffer either fills up or bottoms out, the buffer is copied
back to the host and reset to a moving midpoint which minimizes
the amount of synchronizations that need to occur. The fixed-size
nature of the buffer ensures that it will fit within the GPU memory
throughout the entire simulation and allows the size to be changed
depending on which GPU generation is being used.

1.6 Halo Exchange
Similar to the original MPI code, it is beneficial to split the work
among multiple GPUs. With this in-place approach, we assign one
MPI rank to one available GPU, using the PCI bus topology to
make the optimal selections. This ensures that each GPU has its
own domain section to work on and conserves the underlying
decomposition. We can also use the MPI structure of the original
CPU code by copying the data in the halo back to the host where
it is packed and transferred using MPI. However, this introduces a
large bottleneck with many data copies.

Depending on the hardware available, the halo exchange can be
accelerated with the use of NVLink, which we use via the NCCL
library to perform GPU-to-GPU transfers [2]. To fit within the
abstract GPU domain, a new index map is introduced to map over-
lapping halos on the GPU to its neighboring devices. The NCCL
library then allows us to piggy-back off of the existing MPI commu-
nicator to create a NCCL communicator that is aware of the rank
to GPU mapping. The new NCCL sends and receives can use the
NVLink fabric present on our 8-way machines, greatly reducing the
communication time. These two approaches give us the flexibility
to make optimal use of various types of hardware while keeping
the original MPI system untouched.

1.7 Results
Throughout this development process, we performed benchmarks
of various sizes to understand our computational speedup. The
results for five internal production-scale benchmarks are shown in
Figure 1. The new GPU code with NCCL runs 95 to 115 times faster
than the CPU code running on a distributed cluster. Switching the
halo exchange to MPI allows us to run benchmarks on two GPU
machines, but the communication bottleneck creates a substantial
slowdown.

Figure 1: The speed of the simulation given in iterations
per hour of computation on a given SKU. These results are
from five production-scale benchmarks with five million
iterations and meshes on the order of one million cells. The
CPU code ran on 32 Azure HBv3 nodes with 120 AMD cores
and the GPU codes ran on the Azure ND96 SKUs with 8 A100
GPUs.

This speedup outweighs the extra cost of the more expensive
GPU nodes in Azure, allowing us to capture substantial compute
cost savings. Additionally, the speedup allows for much faster work-
flows, less wait time, and higher resolution outputs. Longer sim-
ulations originally taking multiple weeks on upwards of 40 CPU
nodes can now comfortably be run over the weekend on a single
GPU node.

1.8 Future Work
One issue that has surfaced in our testing is a lack of memory on
the GPU nodes. The original algorithm is comfortably split among
many CPU nodes, distributing the memory load. As shown by our
two node benchmarks, the GPU implementation is best run on a
single node, which now has to store the entire sediment grid in
memory. Therefore, it is necessary for us to find and implement a
new memory management system such as offloading memory to
disk storage.

Other future work will include implementation and benchmark-
ing on the new H100 GPUs and continued optimization of the
GPU workflow. This approach can also be applied to other simi-
lar applications, further improving the efficiency of our compute
environment.
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