
SCALABLE LATTICE BOLTZMANN LEAPS TO EXASCALE
Radim Vavrik, Ondrej Vysocky,
Kristian Kadlubiak, Lubomir

Riha
IT4Innovations, VŠB - Technical

University of Ostrava
Ostrava, Czech Republic

Jayesh Badwaik
Jülich Supercomputing Center

Germany

Romain Cuidard, Denis Ricot
CS Group

Le Plessis-Robinson, France

Gabriel Staffelbach, Markus
Holzer
CERFACS

Toulouse, France

Philipp Suffa
University of Erlangen-Nuremberg

Erlangen, Germany

KEYWORDS

LBM, code generation, GPU portability, C++ 17, technology transfer

ACM Reference Format:

Radim Vavrik, Ondrej Vysocky, Kristian Kadlubiak, Lubomir Riha, Jayesh
Badwaik, Romain Cuidard, Denis Ricot, Gabriel Staffelbach, Markus Holzer,
and Philipp Suffa. 2023. SCALABLE LATTICE BOLTZMANN LEAPS TO
EXASCALE. In Proceedings of Supercomputing 2023 (SC2023). ACM, New
York, NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The primary goal of the EuroHPC JU project SCALABLE is to
improve an industrial Lattice Boltzmann Method (LBM)-based com-
putational fluid dynamics (CFD) solver to be capable of exploiting
current and future extreme scale architectures, while preserving
its accessibility from both the end-user and software developer’s
point of view. This is accomplished by transferring technology and
knowledge between an academic code waLBerla and an industrial
code (LaBS). This poster briefly introduces the characteristics of
both software packages and the technology transfer involved in the
process with the resulting improvements both on CPU and GPU as
well as the interest directed to energy efficiency.

Lattice Boltzmann methods are trustworthy alternatives to con-
ventional CFD, showing roughly an order of magnitude perfor-
mance advantage over Navier-Stokes approaches in comparable
scenarios. The SCALABLE brings together the developers of waL-
Berla and LaBS to improve both solvers in terms of portability
(e.g. targeting GPUs), energy efficiency scenarios, and transferring
techniques between the two to achieve high performance, scalabil-
ity, and energy efficiency breaking the silos between the worlds of
scientific computing and physical flow modeling.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC2023, Nov 2023, Denver, US
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

2 EXCHANGE OF TECHNOLOGIES BETWEEN

LABS ANDWALBERLA

The main target of the collaboration is to get LaBS’s accuracy
on complex geometry with the good performance and scalability
demonstrated by waLBerla. To do so, developers of both codes
have exchanged ideas and strategies, and this has lead to new op-
timizations of the solver. First, adding the portability to NVIDIA
GPUs and secondly, improving parallel efficiency on classical HPC
clusters.

2.1 GPU portability

waLBerla uses code generation to tackle LBM execution on GPU
accelerated clusters. Motivated by the performance observed with
waLBerla, LaBS decided to push towards a GPU version. However,
to maintain as much as possible a single source base for both CPU
and GPU, LaBS chose to implement C++17 standard parallelism.
Combined with the NVC++ compiler from NVIDIA, this allows to
have a single CPU and GPU code. Two major optimization on the
LaBSGPU prototype are the results of an exchange withwaLBerla:

• The merging of functions. We observe that we have to
reduce the number of calls to the GPU to increase the per-
formance. So we have merged Propagate + Macroscopic and
Gardient + Collide steps.

• The reduction of memory footprint. Among the quanti-
ties analyzed using NVIDIA profiler tools, one can denote
the size of memory and number of registers used by each
GPU thread, the occupancy percentage of the GPU card and
the size of the grid used by the GPU kernels. So we replaced
many static arrays with C++ macros.

This work, detailed in [1], had lead to an improvement on sim-
ple test case from 28MLUPs to 609MLUPs and on specific cases
even 2550MLUPs bridging the performance gap between LaBS and
waLBerla.

2.2 Data exchange reduction

Another interesting exchange lead to the realization that data ex-
changes in LaBS was ~3-4x higher than waLBerla although they
use similar solving methods. This lead to the optimization of the
particle distribution function (PDF) data exchanges (see figure 1).

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SC2023, Nov 2023, Denver, US

32 64 128 256 512
MPI processes

0

2

4

6

8

10

12

14

Da
ta
 e
xc
ha

ng
ed

 [G
B]

PDF data exchanged, COVO 400x400x400 nodes - 2x 16-core Intel Skylake 6142
waLBerla
LaBS
LaBS optimized

Figure 1: PDF data exchanged comparison between waL-

Berla versus LaBS before optimization and after.

2.3 Exporting waLBerla code generation

Building upon the waLBerla expertise using code generation, we
engaged in an interesting experiment: waLBerla implemented
the LaBS HRR collision model and resulting generated kernel was
converted and integrated into the LaBS architecture.

This experiment has the following goals:
• For waLBerla, it allows the direct comparison with other
classical collision models.

• For LaBS, it allows a direct comparison of the HRR perfor-
mance and results using a hand made implementation and
an automatically optimized one using the code generation.

Results are pending, as the kernel conversion to LaBS is on-going
and is expected by SC23.

3 WALBERLA PERFORMANCE PORTABILITY

ON EUROHPC JU SYSTEM: LUMI-G

In the SCALABLE project waLBerla was ported to support AMD
GPUs using the ROCm framework and the code generation pipeline
for highly efficient compute kernels. This effort can be demon-
strated firstly on the LUMI supercomputer using up to 4096MI250x
GPUs (2x GCD per GPU). The results of a weak-scaling experiment
on the Lagoon test case are shown in figure 2 using a uniform
mesh with 5123 cells on each GCD. On 4096 GPUs we reach a scal-
ing efficiency of 88% using the AMD ROCm RDMA (GPU direct
communication).

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of GPUs

10

40

160

640

2560

10240

GL
UP

s

waLBerla weak scaling, Lagoon
 LUMI-G (1x 64-core AMD 7A53 + 4x AMD MI250x)

Ideal scaling
waLBerla

Figure 2: Weak scaling waLBerla on LUMI-G.

4 ENERGY EFFICIENCY AND PERFORMANCE

Most hardware has baseline settings defined by the vendor for
a specific performance versus energy consumption. However all
applications do not use the hardware in the same manner and
it is possible to tune certain component’s behavior to match the
specific requirements of a running application, e.g. exploiting the
dynamic behavior of different steps of a code. In SCALABLE, us-
ing the MERIC runtime system [3] implemented in Horizon 2020
READEX [2], we have successfully demonstrated improved energy
consumption of LaBS on a non-accelerated system by up to 12%
without performance penalty using the dynamic tuning of CPU core
and uncore frequencies. Further more, the accelerated version of
waLBerla using the static tuning of GPU streaming multiprocessor
frequency has been tested on NVIDIA A100 GPUs reducing energy
consumption by almost 20 % with a 2 % impact on performance.

5 CONCLUSIONS

SCALABLE illustrates the synergy between academic and industrial
application developers. Using academic codes as light house appli-
cations to single out successful porting and optimization strategies
leads to concrete day to day improvements for applied tools used in
industry. Here, data exchanges have been reduced by a factor 3 in
the industrial code, leading to reduced bandwidth requirements for
multi-core systems. Also, this code is now able to use NVIDIA GPUs
using C++ 17 and NVC++ with comparable kernel performance
with the automatic code generated code. This automatic code gen-
erator is now being used to improve CPU kernel performance as
well by integrating the ad-hoc generated code fromwaLBerla into
LaBS.waLBerla continues to pave the way with the first results on
the EuroHPC JU system LUMI-G using AMDMI250x GPUs showing
excellent scaling up to 4096 GPUs for now. This work will continue
until the end of the project with a showcase application leveraging
all improvement on these codes on a contra rotated open rotor
Z08-AIPX7 case. Finally, using hardware tuning, we have improved
the performance/energy consumption ratio by 10 to 20 % on CPU
and GPU.

6 ACKNOWLEDGMENTS

The SCALABLE project (2021-2023) has received funding from the
European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 956000. The JU receives support from the
European Union’s Horizon 2020 research and innovation program
and France, Germany, Czech Republic. This work was supported by
the Ministry of Education, Youth and Sports of the Czech Republic
(ID: MC2103) and through the e-INFRA CZ (ID:90254).

REFERENCES

[1] Raphael Kuate. 2023. D3.3 implementation and final report about scheduling
and load-balancing. (2023). https://zenodo.org/record/8153995.

[2] Joseph Schuchart et al. 2017. The readex formalism for automatic tuning for
energy efficiency. Computing, 99, 8, (Aug. 2017), 727–745. doi: 10.1007/s00607-0
16-0532-7.

[3] O. Vysocky, M. Beseda, L. Riha, J. Zapletal, V. Nikl, M. Lysaght, and V. Kannan.
2017. Evaluation of the HPC applications dynamic behavior in terms of energy
consumption. In Proceedings of the Fifth International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, 1–19. doi: 10.4203/ccp.1
11.3.

https://zenodo.org/record/8153995
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.1007/s00607-016-0532-7
https://doi.org/10.4203/ccp.111.3
https://doi.org/10.4203/ccp.111.3

	1 Introduction
	2 Exchange of technologies between LaBS and waLBerla
	2.1 GPU portability
	2.2 Data exchange reduction
	2.3 Exporting waLBerla code generation

	3 waLBerla performance portability on Eurohpc JU system: LUMI-G
	4 Energy efficiency and performance
	5 Conclusions
	6 Acknowledgments

