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1 INTRODUCTION

The primary goal of the EuroHPC JU project SCALABLE is to
improve an industrial Lattice Boltzmann Method (LBM)-based com-
putational fluid dynamics (CFD) solver to be capable of exploiting
current and future extreme scale architectures, while preserving
its accessibility from both the end-user and software developer’s
point of view. This is accomplished by transferring technology and
knowledge between an academic code waLBerla and an industrial
code (LaBS). This poster briefly introduces the characteristics of
both software packages and the technology transfer involved in the
process with the resulting improvements both on CPU and GPU as
well as the interest directed to energy efficiency.

Lattice Boltzmann methods are trustworthy alternatives to con-
ventional CFD, showing roughly an order of magnitude perfor-
mance advantage over Navier-Stokes approaches in comparable
scenarios. The SCALABLE brings together the developers of waL-
Berla and LaBS to improve both solvers in terms of portability
(e.g. targeting GPUs), energy efficiency scenarios, and transferring
techniques between the two to achieve high performance, scalabil-
ity, and energy efficiency breaking the silos between the worlds of
scientific computing and physical flow modeling.
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2 EXCHANGE OF TECHNOLOGIES BETWEEN

LABS ANDWALBERLA

The main target of the collaboration is to get LaBS’s accuracy
on complex geometry with the good performance and scalability
demonstrated by waLBerla. To do so, developers of both codes
have exchanged ideas and strategies, and this has lead to new op-
timizations of the solver. First, adding the portability to NVIDIA
GPUs and secondly, improving parallel efficiency on classical HPC
clusters.

2.1 GPU portability

waLBerla uses code generation to tackle LBM execution on GPU
accelerated clusters. Motivated by the performance observed with
waLBerla, LaBS decided to push towards a GPU version. However,
to maintain as much as possible a single source base for both CPU
and GPU, LaBS chose to implement C++17 standard parallelism.
Combined with the NVC++ compiler from NVIDIA, this allows to
have a single CPU and GPU code. Two major optimization on the
LaBSGPU prototype are the results of an exchange withwaLBerla:

• The merging of functions. We observe that we have to
reduce the number of calls to the GPU to increase the per-
formance. So we have merged Propagate + Macroscopic and
Gardient + Collide steps.

• The reduction of memory footprint. Among the quanti-
ties analyzed using NVIDIA profiler tools, one can denote
the size of memory and number of registers used by each
GPU thread, the occupancy percentage of the GPU card and
the size of the grid used by the GPU kernels. So we replaced
many static arrays with C++ macros.

This work, detailed in [1], had lead to an improvement on sim-
ple test case from 28MLUPs to 609MLUPs and on specific cases
even 2550MLUPs bridging the performance gap between LaBS and
waLBerla.

2.2 Data exchange reduction

Another interesting exchange lead to the realization that data ex-
changes in LaBS was ~3-4x higher than waLBerla although they
use similar solving methods. This lead to the optimization of the
particle distribution function (PDF) data exchanges (see figure 1).
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Figure 1: PDF data exchanged comparison between waL-

Berla versus LaBS before optimization and after.

2.3 Exporting waLBerla code generation

Building upon the waLBerla expertise using code generation, we
engaged in an interesting experiment: waLBerla implemented
the LaBS HRR collision model and resulting generated kernel was
converted and integrated into the LaBS architecture.

This experiment has the following goals:
• For waLBerla, it allows the direct comparison with other
classical collision models.

• For LaBS, it allows a direct comparison of the HRR perfor-
mance and results using a hand made implementation and
an automatically optimized one using the code generation.

Results are pending, as the kernel conversion to LaBS is on-going
and is expected by SC23.

3 WALBERLA PERFORMANCE PORTABILITY

ON EUROHPC JU SYSTEM: LUMI-G

In the SCALABLE project waLBerla was ported to support AMD
GPUs using the ROCm framework and the code generation pipeline
for highly efficient compute kernels. This effort can be demon-
strated firstly on the LUMI supercomputer using up to 4096MI250x
GPUs (2x GCD per GPU). The results of a weak-scaling experiment
on the Lagoon test case are shown in figure 2 using a uniform
mesh with 5123 cells on each GCD. On 4096 GPUs we reach a scal-
ing efficiency of 88% using the AMD ROCm RDMA (GPU direct
communication).
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Figure 2: Weak scaling waLBerla on LUMI-G.

4 ENERGY EFFICIENCY AND PERFORMANCE

Most hardware has baseline settings defined by the vendor for
a specific performance versus energy consumption. However all
applications do not use the hardware in the same manner and
it is possible to tune certain component’s behavior to match the
specific requirements of a running application, e.g. exploiting the
dynamic behavior of different steps of a code. In SCALABLE, us-
ing the MERIC runtime system [3] implemented in Horizon 2020
READEX [2], we have successfully demonstrated improved energy
consumption of LaBS on a non-accelerated system by up to 12%
without performance penalty using the dynamic tuning of CPU core
and uncore frequencies. Further more, the accelerated version of
waLBerla using the static tuning of GPU streaming multiprocessor
frequency has been tested on NVIDIA A100 GPUs reducing energy
consumption by almost 20 % with a 2 % impact on performance.

5 CONCLUSIONS

SCALABLE illustrates the synergy between academic and industrial
application developers. Using academic codes as light house appli-
cations to single out successful porting and optimization strategies
leads to concrete day to day improvements for applied tools used in
industry. Here, data exchanges have been reduced by a factor 3 in
the industrial code, leading to reduced bandwidth requirements for
multi-core systems. Also, this code is now able to use NVIDIA GPUs
using C++ 17 and NVC++ with comparable kernel performance
with the automatic code generated code. This automatic code gen-
erator is now being used to improve CPU kernel performance as
well by integrating the ad-hoc generated code fromwaLBerla into
LaBS.waLBerla continues to pave the way with the first results on
the EuroHPC JU system LUMI-G using AMDMI250x GPUs showing
excellent scaling up to 4096 GPUs for now. This work will continue
until the end of the project with a showcase application leveraging
all improvement on these codes on a contra rotated open rotor
Z08-AIPX7 case. Finally, using hardware tuning, we have improved
the performance/energy consumption ratio by 10 to 20 % on CPU
and GPU.
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