
Empty pool

Must grow the pool to
accommodate new allocation

A B

A

Allocate A

Allocate B

B

Deallocate A

B

Try to allocate another B, but it can’t fit in current pool

BB

B B

Results

Temporal Classification of Allocations for Reduced Memory Usage
Kristi Belcher1, David Beckingsale1, Sam Schwartz2, Marty McFadden1

1Lawrence Livermore National Laboratory, 2University of Oregon

Background

The performance of memory pools in scientific applications varies widely, especially when
accommodating for temporary and permanent allocations. The Umpire team from Lawrence
Livermore National Laboratory (LLNL) used SAMRAI and BoBa application tests to study
how well our machine learning (ML) model could predict these two allocation types. We
then use these predictions to create separate memory pools for permanent allocations. We
found that separating temporary and permanent allocations into distinct pools reduced peak
memory usage significantly (for our tests, by up to 29.5%).

LLNL-POST-852652This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory.

Conclusions

• Memory pools can have a mixture of temporary and
permanent memory allocations.
• If the mixture of temporary and permanent allocations

becomes too complex, fragmentation occurs (Fig. 1) and
memory pool performance will suffer.
• Separating memory allocations into distinct pools with the

same scope (lifespan) will help memory pool performance
by minimizing the opportunity for fragmentation to occur.

• We collected different features and
used Scikit-Learn to determine their
importance (Fig. 2)

• The calculated F1 scores (median value
≥ 0.998) helped us determine that our
model was a good fit to the data.

• Using a machine learning model, we can accurately categorize each
allocation in a pool as either temporary or permanent.
• Backtrace information for each allocation is a very important feature

• Usually, Random Forests were the best prediction model

• Using this strategy led to a reduction of peak memory usage by up to
624kB out of the 2.11MB total (29.5%) for the BoBa application test.
• This leads us to believe fragmentation was reduced, but future study will be

needed to determine by how much and if that effects overall performance

• Regarding future work, to see bigger memory savings, we need to use
applications with larger, more complex memory allocations.

• Umpire (developed at LLNL) provides memory pools which allow a less expensive way to
allocate all needed memory for HPC applications, compared to device specific APIs.

Scan the QR code to see our
GitHub branch with experiments
and reproducibility instructions.

Clone Umpire:
https://github.com/LLNL/Umpire

Contact the Umpire Team:
umpire-dev@llnl.gov

Approach

• Experiments performed using Replay trace files from BoBa
and SAMRAI tests to determine how much memory savings
can be had by applying our model.

• SAMRAI test did not use much if any permanent memory, so
the ML tool did not categorize allocations to be moved to a
separate pool (confirmed by Replay).

• BoBa test used permanent memory which the ML tool
correctly classified and put in a separate pool. Fig. 4 shows
the resulting memory savings (up to 624 kB saved out of a
2.1 MB total, or about 29.5%).

• Fig. 5 zooms in on the growth of the Permanent Allocations
(purple dashed line) as the program starts up.

Build and run application with
Umpire’s ML-equipped Replay

tool to generate a .stats file

Build ML tool and run it on the
.stats file to generate new output

file with ML predictions

Visualize the outputs
with PyDv plots

Figure 2: The types of features we used in our
models and their calculated importance.

Figure 3: Our workflow for generating Replay files that will then be used as input to our ML tool. The
resulting file can then be visualized with PyDv for analysis.

• Our workflow (Fig. 3) consisted of using Umpire’s debugging and memory analysis
tool, Replay, to trace all memory allocations throughout the SAMRAI and BoBa tests

• The output .stats file from Replay was then used as input to the ML tool to do
temporal classifications and categorize the memory allocations

• These files contain backtrace information, memory addresses, etc. for each allocator
throughout the program

• Replay was used again on the output files generated from the ML tool to produce the
.ult files for PyDv (an open source, Python based LLNL app) visualization and analysis

Figure 1: Depiction of how fragmentation
occurs in a memory pool. Because A and B
have different lifespans in the pool, when
A is deallocated, an additional B allocation
will no longer fit in the pool without first
growing the pool to accommodate the
new allocation, creating fragmentation.

Figure 4: A before and after comparison of the BoBa memory pool with our ML tool. The
BoBa memory pool (silver line) is lower after the ML tool predictions compared to before
(blue line). The purple dashed line shows how much permanent memory could be
separated into a distinct pool.

Figure 5: Zooming in on the first 1000 events
from Fig. 4, we see the Permanent Allocations
(purple dashed line) grow as allocations are
made at the beginning of the program.

• In order to see greater memory savings, we will need
production level applications which allocate GBs of memory
for the duration of the program.
• These results provide a proof of concept that our ML tool can be used

to accurately temporally classify allocations as permanent or not

• Future studies with other, larger applications are expected to
be consistent with these results

• More study needed to determine how this will impact
fragmentation within the memory pool and to what degree

