
Temporal Classification of Allocations for Reduced Memory
Usage

Kristi Belcher, David Beckingsale, Marty
McFadden

Lawrence Livermore National Laboratory
Livermore, California, USA

{belcher6,beckingsale1,mcfadden8}@llnl.gov

Sam Schwartz
University of Oregon
Eugene, Oregon, USA
sam@cs.uoregon.edu

ABSTRACT
Umpire, a data and memory management API created at Lawrence
Livermore National Laboratory (LLNL), provides memory pools
which enable less expensive ways to allocate very large amounts
of memory in HPC environments. In practice, memory pools com-
monly contain both allocations that persist for only a portion of the
program (temporary) and those that persist for the entire program
(permanent). However, too much of a mix of both temporary and
permanent allocations can lead to pool fragmentation and cause
the pool to perform poorly or even run out of memory. The Umpire
team created a tool that uses a machine learning (ML) model to
perform temporal classifications and categorize allocations as either
temporary or permanent. We conducted several experiments using
trace files from two LLNL applications to study how much memory
can be saved when those allocations are separated into distinct
pools. We found that our ML tool accurately classifies memory
allocations and that separating these allocation types into distinct
pools reduces overall memory usage significantly (for this study,
up to 29.5%).

ACM Reference Format:
Kristi Belcher, David Beckingsale, Marty McFadden and Sam Schwartz.
2023. Temporal Classification of Allocations for Reduced Memory Usage. In
Proceedings of ACM Conference (SuperComputing ’23). ACM, New York, NY,
USA, 3 pages.

1 INTRODUCTION AND BACKGROUND
Umpire [1] is an open source library created at LLNL that pro-
vides a unified, portable memory management API to accommodate
modern HPC platforms with complex combinations of memory re-
sources. Many of the large, multi-physics applications at LLNL use
Umpire for memory management. To address the limited memory
resources on HPC devices, Umpire provides memory pools which
allow developers to allocate all needed memory at once instead of
making multiple, smaller memory allocations which can become
quite expensive, particularly with device specific APIs.

Sometimes, however, memory pool performance can suffer if
the pool becomes fragmented. Fragmentation occurs when not all
the available (i.e. empty) blocks of memory within a pool can be
used, so a pool grows in size to accommodate a new allocation
instead of reusing the available blocks already in the pool. Many of
the multi-physics codes at LLNL have complex memory allocation
patterns where some allocations persist for only a portion of the

SuperComputing ’23, November 2013, Denver, CO, USA
© 2023 Association for Computing Machinery.

program (temporary allocations) yet other allocations persist for
the entirety of the program (permanent allocations). Both of these
types of memory allocations get placed in the same memory pool,
making a mix of temporary and permanent allocations in the same
pool and increasing the likelihood that fragmentation will occur.

Motivated to minimize the chances of fragmentation developing
in a pool, the Umpire team created a tool that uses a machine
learning model to temporally classify each allocation as temporary
or permanent. With each allocation type categorized, the Umpire
team then used Replay, a debugging tool included in the Umpire
API that can track and trace memory allocations, to determine
if separating those allocations into distinct memory pools would
improve overall memory usage and memory pool performance.

2 METHODOLOGY AND APPROACH
For our experiments, we used SAMRAI [5], an open source library
from LLNL for applied structured adaptive mesh refinement and
BoBa [2], an applied mathematics library for tensor network al-
gorithms. The Umpire team started by determining features to be
used in the machine learning model. Table 1 shows the full list of
features we created that describe our allocations in detail.

We determined there were 3 main categories of features and used
Python and Scikit-Learn [4] to compute the feature importance of
each.

Below is a summary of the most important types of features used
in our model with the corresponding feature importance scores:

• Encoded Backtrace Information: Includesmemory addresses
and a stack trace for each allocation. Feature Importance:
73%

• Time-Related Information: Includes information aboutwhen
an allocationwasmade and how long the allocation persisted.
Feature Importance: 15%

• Allocator Frequency Information: Includes information about
how active the Umpire allocator was which made the alloca-
tion. Feature Importance: 6%

• All Other Features: Includes any other feature we tried not
already included above. Feature Importance: 6%

With our list of features, we performed a check to see which
machine learning model produced the highest F1 score for a collec-
tion of test runs in both the SAMRAI and BoBa applications. After
running each test multiple times, the highest F1 scoring model was
then used to categorize our allocations. All of our tests produced a
median F1 score of 0.998 or higher, giving us confidence that our
classification model fit the data.

In our workflow, we first generated trace files with the Replay
tool from running several SAMRAI and BoBa test problems. The



SuperComputing ’23, November 2013, Denver, CO, USA Kristi Belcher, David Beckingsale, Marty McFadden and Sam Schwartz

Feature
Name Description
A Time since Umpire manager created
B Time since allocator created
C Percentage of time elapsed after allocator was created
D Percentage of time elapsed before allocator was

created
E1 Allocator name includes the substring "temp"
E2 Allocator name includes the substring "perm"
E3 Allocator name and order index
E4 Allocator name and order is the same as the

first created
E5 Allocator name and order is the same as the

last allocation event
E6 Number of times this allocator has been invoked
E7 Allocator name and order is the same as the

most commonly invoked allocator name and order
E8 Allocator type index
E9 Allocator type is same as first one created
E10 Allocator type is the same as the last

allocation event
E11 Number of times this allocator type has been invoked
E12 Allocator type is the same as the most commonly

invoked allocator type
F Allocation size requested
G Total number of frames
H Backtrace information
Table 1: A table of features used in the ML model.

trace files include information about allocations throughout the
program including backtraces, memory addresses, allocator meta-
data, and much more. We then used the trace files as input to our
ML tool to create predictions on which allocations could be placed
in a permanent memory pool. Next, we used the Replay tool again
to interpret the output from the ML tool and produce an ULTRA file.
We then visualized and analyzed these results with PyDv [3] to de-
termine the performance savings after separating these allocations
into distinct pools.

3 RESULTS
After analyzing many SAMRAI test runs, we discovered that all
of the SAMRAI tests did not use enough permanent memory to
really benefit from our ML tool. The ML tool classified very few
permanent allocations, if any, so no separate pool was needed. We
used Umpire’s Replay tool to confirm these results.

On the other hand, after running our ML tool on the BoBa ap-
plication trace collected from Replay, we determined there was
up to 624kB of memory saved out of the total 2.11MB memory
used (about 29.5%). Figure 1 shows the analysis the Umpire team
performed on this BoBa test trace file. By separating the perma-
nent memory (purple dashed line) predicted from the ML tool into
its own distinct pool, the BoBa memory pool (silver line) shrinks
considerably compared to before (blue line).

Additionally, Figure 2 zooms in on the first 1000 events of the
same BoBa test run. As the program starts up and allocates perma-
nent memory, we can better see the impact of separating permanent

Figure 1: Comparison between the BoBamemory pool before
(blue line) versus after (silver line) the permanent memory
allocations (purple dashed line) were separated into a sepa-
rate pool with Replay.

allocations. These results provide a proof of concept that this strat-
egy can work for larger applications. Although we believe these
results correlate to less fragmentation within the pool, further study
is needed to measure to what degree fragmentation is reduced.

Figure 2: Zooming in on the first 1000 events of the BoBa test
run to better illustrate what is happening.

We have demonstrated that our ML tool works as an accurate
classifier of permanent vs. temporary allocations. To achieve better
memory savings, we will use our ML classifier tool along with
Replay with more production-level multi-physics codes at LLNL
which have more complex allocation patterns and that allocate GBs
of data in total.

4 CONCLUSIONS AND FUTUREWORK
After applying our machine learning model to our two applications,
we found that the model was able to accurately predict permanent
vs. temporary allocations with F1 scores of over 0.998. After using
the predictions from our model, the BoBa test code was able to
reduce peak memory consumption by up to 624kB (about 29.5% of
total memory). On the other hand, since the SAMRAI test runs only
used a very small amount of permanent memory, if any, wewere not
able to see similar reductions in memory usage. The next step in our
study will be to use our ML classification tool with this workflow on
applications with a more complex mix of temporary and permanent
allocations. Additionally, we will conduct a more targeted study to
determine the degree to which this kind of approach can reduce
fragmentation within the memory pool.



Temporal Classification of Allocations for Reduced Memory Usage SuperComputing ’23, November 2013, Denver, CO, USA

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under con-
tract DE-AC52-07NA27344. Lawrence Livermore National Security,
LLC. LLNL-ABS-852653

REFERENCES
[1] D. A. Beckingsale, M. J. McFadden, J. P. S. Dahm, R. Pankajakshan, and R. D.

Hornung. 2020. Umpire: Application-focused management and coordination of
complex hierarchical memory. IBM Journal of Research and Development 64, 3/4
(2020), 00:1–00:10. https://doi.org/10.1147/JRD.2019.2954403

[2] P. Guthrey, J. Burmark, and W. Schill. 2022. BoBa: HPC Implementations of Tensor
Train Discretizations. Technical Report. Zürich, Germany.

[3] M. Kwiat, D. Miller, K. Griffin, and E. Rusu. 2011. PyDv: the Python Data Visualizer.
https://github.com/LLNL/PyDV

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[5] Andrew M. Wissink, Richard D. Hornung, Scott R. Kohn, Steve S. Smith, and Noah
Elliott. 2001. Large Scale Parallel Structured AMR Calculations Using the SAMRAI
Framework. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing
(Denver, Colorado) (SC ’01). Association for Computing Machinery, New York,
NY, USA, 6. https://doi.org/10.1145/582034.582040

A REPRODUCIBILITY INITIATIVE
In order to reproduce these results, follow along the step-by-step
guide found on Github here or copy and paste https://github.com/
kab163/SC23-Reproducibility into your browser. In order to build
and run the replay tool, you can follow the guides here and here.
Or you can copy and paste these URLs into your browser: https://
umpire.readthedocs.io/en/develop/sphinx/tutorial/replay.html and
https://umpire.readthedocs.io/en/develop/sphinx/features/logging_
and_replay.html. You can find more about the PyDv tool for vi-
sualizing and plotting data here or copy and paste https://pydv.
readthedocs.io/en/latest/index.html into your browser.

https://doi.org/10.1147/JRD.2019.2954403
https://github.com/LLNL/PyDV
https://doi.org/10.1145/582034.582040
https://github.com/kab163/SC23-Reproducibility
https://github.com/kab163/SC23-Reproducibility
https://github.com/kab163/SC23-Reproducibility
https://umpire.readthedocs.io/en/develop/sphinx/tutorial/replay.html
https://umpire.readthedocs.io/en/develop/sphinx/features/logging_and_replay.html
https://umpire.readthedocs.io/en/develop/sphinx/tutorial/replay.html
https://umpire.readthedocs.io/en/develop/sphinx/tutorial/replay.html
https://umpire.readthedocs.io/en/develop/sphinx/features/logging_and_replay.html
https://umpire.readthedocs.io/en/develop/sphinx/features/logging_and_replay.html
https://pydv.readthedocs.io/en/latest/index.html
https://pydv.readthedocs.io/en/latest/index.html
https://pydv.readthedocs.io/en/latest/index.html

	Abstract
	1 Introduction and Background
	2 Methodology and Approach
	3 Results
	4 Conclusions and Future Work
	Acknowledgments
	References
	A Reproducibility Initiative

