GPU-ACCELERATED DENSE COVARIANCE MATRIX GENERATION FOR SPATIAL STATISTICS APPLICATIONS
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PERFORMANCE PROFILING

e We used StarPU FxT and ViTE software to profile creating a Matérn kernel matrix on a
dual-socket 20-core Intel Skylake machine with an NVIDIA V100 GPU. The graph shows
the trace while running the generation function exclusively on CPUs. It reveals that with-
out cross-unit synchronization needs, all CPUs stay fully active (shown in green).

PERFORMANCE RESULTS

 We evaluated our proposed implementations by conducting a comparison with the CPU-
based matrix generation on two distinct systems. The first machine consists of a dual-
socket 20-core Intel Skylake Xeon Platinum 8260 CPU running at 2.40 GHz and an
NVIDIA Tesla V100 GPU SXM2 with 32GB memory. The second machine comprises a
dual-socket 28-core Intel Icelake Xeon Gold 6330 running at 2.00 GHz and one NVIDIA
A100 Tensor Core GPU with 40GB memory.

INTRODUCTION PROPOSED SCHEMES

e Spatial statistics applications aim to study patterns, distributions, and relationships of
variables across different locations in a given spatial region.

* In the present era, the abundance of massive spatial data volumes makes High-
Performance Computing (HPC) indispensable for eftectively handling the processing of
high-resolution maps.
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e Software such as ExaGeoStat offers a high-performance computing framework tailored

for large-scale spatial data challenges, providing effective solutions for processing vast I Pure GPU * We have chosen two representative examples to illustrate the two matrix generation
amounts of data. ] schemes. For the Pure GPU approach, we utilize the power exponential kernel function,
trix e . I which does not require CPU-only special functions
o LExaGeoStat relies on the Maximum Likelihood Estimation (MLE) algorithm to model spa- 1M izt et | ' nges - -
:idle

tial data through statistical inference. This statistical framework assumes that the spatial [
measurements are realizations of Gaussian spatial random field, i.e., Z(s1), ..., Z(sn) ~
F(s), where s refers to spatial locations. In the context of our research, we denote mean

Cr([[hll2) = o® exp(—|[h][y*/B1)
For the Hybrid implementation, we use Matérn kernel function which has moditied
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. | . I Bessel function of the second kind (/C,) that cannot be computed on GPU,
function m(s) and covariance/kernel matrix 1. Generate locations
. 2. Set parameters | 2 v
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where N is the number of spatial locations, s; — s; is the spatial lag vector of location s; ! 2T\ B b
and s;, and C'(-; 0) is a stationary parametric covariance/kernel function w.r.t. spatial lag o Nien one narares) copy 1. and 2. i e To conduct the performance comparison, we repeated each experiment five times and  The graph below displays execution traces on a dual-socket 20-core Intel Skylake with
vectors. Ll P ] calculated the average elapsed time from the results. an NVIDIA V100 GPU. The profiling graph indicates that each tile is promptly sent for
* The problems involve an extensive number of measurements distributed regularly or | Hybrid | f2(-) processing on the GPU once fi(-) processing on the CPU is done, demonstrating
irregularly across a geographical region, requiring the generation of a dense covariance T Performance Evaluation (Power exp. kernel) CPU-GPU synchronization. Asynchronous execution is evident across all CPUs. Similar
N 1 1 ] 107 ==t=' 40-core Icelake -7 * . e
1(0) = —— log(27) — = log |2(8)| — =2 =(0)" Z. 5 ||—e— vi00 ',:::,’ strates a significant speed-up, gener-
| o 2 2 o2 S I copy : o 81 —e— A100 o ating the power exponential kernel
e ExaGeoStat primarily focuses on efficiently computing the underlying linear algebra op- YU/l Kernel matrix M, B 5 P e matrix approximately 4X to 6X faster
erations on the dense covariance matrix. However, in this study, our objective is to accel- g © ‘,:::/ than the CPU. Moreover. as the num-
erate the matrix generation process on GPPU, which becomes time-consuming on the CPU | o = = = = = e = === o= 3 . o= :,‘S:"" ber of locations increase;, the advan-
whér;) Seglin% Wit}tl a large m;l.mber of locations. Previous approaches have relied solely b ;‘_‘_‘_'_':—:—-/—H/‘ tages of utilizing GPU become even 40 B8
On -based Inatrix generation. 2 more evident. Notably, the perfor- T =
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ONTRIBUTIONS

We introduce two matrix generation
schemes, each accommodating different

e Given N locations uniformly randomly distributed, the covariance matrix 3 can be built
using the Matérn kernel function. This covariance matrix can be used to generate obser-

vations Z represented at the generated N locations as follows:

> = LL' Cholesky factorization;
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Performance Evaluation (Matérn kernel)

passes that of the NVIDIA V100 GPU.

In the case of the Matérn kernel, the

kernel functions: Algorithm 1 Algorithm for Matérn kernel matrix _ o -
geﬁeration & Z = Le where e; ~ N (0,1),i =1, ..., N. o] = 40-core Skylake P . hybrid GPU/CPU approach demon- pa———
1. Pure GPU: the matrix kernel func- "1, Initialize matrix Mo with entries zero and divided ST G W alPtae strated superior performance com-
tion relies on mathematical opera-  intotiles T4, ..., T,,,, where n; is the number of tiles \085 14] —o— 40-core Icezake car00 A et pared to the CPU. However, since CONCLUSION AND FUTURE WORK
tors fully supported on the GPU. Require: locations s, ..., sy, parameters 0 = (g, 8, V) 3= R T a7 some computations were still per-
: 1. £ 2: fori=0ton;-1do s il formed on the CPU, the advantages | | e The utilization of GPU-based matrix generation significantly reduces the elapsed time
2. Hybrid:  oftfload wunsupported _ _ E 10 g f the hvbrid h Jim: | | | P
mathematical operators (e.g., the 3 Calculate the distance ||h]|; of the jik;-th entry - oA of the hybrid approach were dimin- compared to CPU-based approaches. Host-device and device-device communications can
modified Bessel function of the of Ti :llSlI'lg Us}'f - skf'”Z _ B L?j _ ’,.::-r’ ished when Compared to the pure be further optimized in the future.
. 4.  Fill the jik;-th tile entry T;j, with fi(||k]l2) := 61 £~ GPU approach. We also showed the 1 . S P . . .
second kind) on the CPU. %, (Iklla/B) on CPU i | . bilitv of hobrid imol e [t can be further applied in zero-gradient optimization with high-dimensional matrices,
;. ’ Repeat until all entries in tile T are filled with e _'-5.”]* A — . fcf, AbLity O oub ybrid 1np imen— including geospatial studies and other studies that use Gaussian regression models.
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* We used the CUDA programming A1) A &(\ @@@ @q@‘ @@ g@o"x (\QSO 0 (\q@” S o)\?OQ tendine ub to 40 cores on a shared-  The proposed two schemes allow for the implementation of additional kernels, such as the
model for kernel matrix generation. ¢ = Let f(|[hll) := 02/(2*"'T()) (|Ikll2/B)" QR 2l Number of locations 5 1P . bivariate Matérn, non-Gaussian Matérn, and others
This study highlights the two schemes, 7. T, « T;:x X f2(llhll2) on GPU el | memory system architecture. ' . . o . . .
b with ¥ | ! R*ﬁkf t H’f{fi 112 . 12/ 3 e Ot TEI e |  The method of evaluating special mathematical functions, like the Bessel function, demon-
cactil With a Specilic example " A hﬁlf;jca (‘;ﬂh) i L - R Performance speed-up (Power exp. kernel) Performance Evaluation (Matérn kernel) strated in tools like the GNU Scientific Library, can be re-implemented using CUDA to
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e The red dashed line follows the Pure o. end for » Note that this for loop is parallelizable Bivariate Matérn Kernel W 251 —e= 40-core Icelake + A100 P enable direct execution on the GPU.
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