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INTRODUCTION
• Spatial statistics applications aim to study patterns, distributions, and relationships of

variables across different locations in a given spatial region.

• In the present era, the abundance of massive spatial data volumes makes High-
Performance Computing (HPC) indispensable for effectively handling the processing of
high-resolution maps.

• Software such as ExaGeoStat offers a high-performance computing framework tailored
for large-scale spatial data challenges, providing effective solutions for processing vast
amounts of data.

• ExaGeoStat relies on the Maximum Likelihood Estimation (MLE) algorithm to model spa-
tial data through statistical inference. This statistical framework assumes that the spatial
measurements are realizations of Gaussian spatial random field, i.e., Z(s1), ..., Z(sN ) ∼
F(s), where s refers to spatial locations. In the context of our research, we denote mean
function m(s) and covariance/kernel matrix

Σ(θ) :=
(
C(si − sj ;θ)

)
ij
, i, j ∈ 1, ..., N,

where N is the number of spatial locations, si − sj is the spatial lag vector of location si
and sj , and C(· ;θ) is a stationary parametric covariance/kernel function w.r.t. spatial lag
vectors.

• The problems involve an extensive number of measurements distributed regularly or
irregularly across a geographical region, requiring the generation of a dense covariance
matrix Σ(θ) with a size of N ×N in each step of the MLE process:

l(θ) = −N

2
log(2π)− 1

2
log |Σ(θ)| − 1

2
Z⊤Σ(θ)−1Z.

• ExaGeoStat primarily focuses on efficiently computing the underlying linear algebra op-
erations on the dense covariance matrix. However, in this study, our objective is to accel-
erate the matrix generation process on GPU, which becomes time-consuming on the CPU
when dealing with a large number of locations. Previous approaches have relied solely
on CPU-based matrix generation.

CONTRIBUTIONS
• We introduce two matrix generation

schemes, each accommodating different
kernel functions:

1. Pure GPU: the matrix kernel func-
tion relies on mathematical opera-
tors fully supported on the GPU.

2. Hybrid: offload unsupported
mathematical operators (e.g., the
modified Bessel function of the
second kind) on the CPU.

• We used the CUDA programming
model for kernel matrix generation.
This study highlights the two schemes,
each with a specific example

• The red dashed line follows the Pure
GPU approach. Matrix M0 is first di-
vided into tiles T 0 = (T01, ..., T0nt).
CPU initializes variables, sets param-
eters, and generates locations. These
variables are transferred to GPU. Ker-
nel function f(·) is applied to tiles T 0 to
generate the tiles T 1 and thus the kernel
matrix M1.

• The blue dashed line follows a Hybrid
approach. It starts by initializing the
matrix

M0, dividing it into T 0, generating locations,
and setting parameters. Intermediate tiles T 1

are then created, evaluating CPU-only math
functions f1(·) to fill matrix entries. On the
GPU, function f2(·) is applied, multiplying
with f1(·) to set tile entries as f1(·)× f2(·), re-
sulting in tiles T 2 and kernel matrix M1.

PROPOSED SCHEMES

EXAMPLES OF GENERATED GEOSPATIAL DATA
• Given N locations uniformly randomly distributed, the covariance matrix Σ can be built

using the Matérn kernel function. This covariance matrix can be used to generate obser-
vations Z̃ represented at the generated N locations as follows:
Σ = LL⊤ Cholesky factorization;
Z̃ = Le where ei ∼ N (0, 1), i = 1, ..., N.

Univariate Matérn Kernel Univariate non-Gaussian Matérn Kernel

Bivariate Matérn Kernel Trivariate Matérn Kernel

Univariate space-time Matérn Kernel

PERFORMANCE RESULTS
• We evaluated our proposed implementations by conducting a comparison with the CPU-

based matrix generation on two distinct systems. The first machine consists of a dual-
socket 20-core Intel Skylake Xeon Platinum 8260 CPU running at 2.40 GHz and an
NVIDIA Tesla V100 GPU SXM2 with 32GB memory. The second machine comprises a
dual-socket 28-core Intel Icelake Xeon Gold 6330 running at 2.00 GHz and one NVIDIA
A100 Tensor Core GPU with 40GB memory.

• We have chosen two representative examples to illustrate the two matrix generation
schemes. For the Pure GPU approach, we utilize the power exponential kernel function,
which does not require CPU-only special functions,

C1(∥h∥2) = σ2 exp(−∥h∥β2

2 /β1)

For the Hybrid implementation, we use Matérn kernel function which has modified
Bessel function of the second kind (Kν) that cannot be computed on GPU,

C2(∥h∥2) =
σ2

2ν−1Γ(ν)

(
∥h∥2
β

)ν

Kν

(
∥h∥2
β

)
• To conduct the performance comparison, we repeated each experiment five times and

calculated the average elapsed time from the results.
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The pure GPU approach demon-
strates a significant speed-up, gener-
ating the power exponential kernel
matrix approximately 4X to 6X faster
than the CPU. Moreover, as the num-
ber of locations increases, the advan-
tages of utilizing GPU become even
more evident. Notably, the perfor-
mance of the NVIDIA A100 GPU sur-
passes that of the NVIDIA V100 GPU.
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In the case of the Matérn kernel, the
hybrid GPU/CPU approach demon-
strated superior performance com-
pared to the CPU. However, since
some computations were still per-
formed on the CPU, the advantages
of the hybrid approach were dimin-
ished when compared to the pure
GPU approach. We also showed the
scalability of our hybrid implemen-
tation across various core counts, ex-
tending up to 40 cores on a shared-
memory system architecture.
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PERFORMANCE PROFILING
• We used StarPU FxT and ViTE software to profile creating a Matérn kernel matrix on a

dual-socket 20-core Intel Skylake machine with an NVIDIA V100 GPU. The graph shows
the trace while running the generation function exclusively on CPUs. It reveals that with-
out cross-unit synchronization needs, all CPUs stay fully active (shown in green).

• The graph below displays execution traces on a dual-socket 20-core Intel Skylake with
an NVIDIA V100 GPU. The profiling graph indicates that each tile is promptly sent for
f2(·) processing on the GPU once f1(·) processing on the CPU is done, demonstrating
CPU-GPU synchronization. Asynchronous execution is evident across all CPUs. Similar
patterns emerge in results when using an A100 GPU.

CONCLUSION AND FUTURE WORK
• The utilization of GPU-based matrix generation significantly reduces the elapsed time

compared to CPU-based approaches. Host-device and device-device communications can
be further optimized in the future.

• It can be further applied in zero-gradient optimization with high-dimensional matrices,
including geospatial studies and other studies that use Gaussian regression models.

• The proposed two schemes allow for the implementation of additional kernels, such as the
bivariate Matérn, non-Gaussian Matérn, and others.

• The method of evaluating special mathematical functions, like the Bessel function, demon-
strated in tools like the GNU Scientific Library, can be re-implemented using CUDA to
enable direct execution on the GPU.
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