
GPU-Accelerated Dense Covariance Matrix Generation for Spatial
Statistics Applications

Zipei Geng1, Sameh Abdulah2, Hatem Ltaief2, Ying Sun12, Marc G. Genton12, David E. Keyes2
1Statistics Program, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

2Extreme Computing Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
{zipei.geng,sameh.abdulah,hatem.ltaief,ying.sun,marc.genton,david.keyes}@kaust.edu.sa

ABSTRACT
Large-scale parallel computing is crucial in Gaussian regressions
to reduce the time complexity of spatial statistics applications. The
log-likelihood function is utilized to evaluate the Gaussian model
for a set of measurements in 𝑁 geographical locations. Several
studies have shown an utilization of modern hardware to scale the
log-likelihood function for handling large numbers of locations.
ExaGeoStat is an example of software that allows parallel statistical
parameter estimation from the log-likelihood function. However,
generating a covariance matrix is mandatory and challenging when
estimating the log-likelihood function. In ExaGeoStat, the genera-
tion process was performed on CPU hardware due to missing math
functions in CUDA libraries, e.g., the modified Bessel function of
the second kind. This study aims to optimize the generation process
using GPU with two proposed generation schemes: pure GPU and
hybrid. Our implementations demonstrate up to 6X speedup with
pure GPU and up to 1.5X speedup with the hybrid scheme.

KEYWORDS
Parallel Computing, GPU Acceleration, Covariance Matrix Genera-
tion, Spatial Statistics
ACM Reference Format:
Zipei Geng1, SamehAbdulah2, Hatem Ltaief2, Ying Sun12, Marc G. Genton12,
David E. Keyes2. 2023. GPU-Accelerated Dense Covariance Matrix Gen-
eration for Spatial Statistics Applications. In Proceedings of (SuperCom-
puting Research Poster ’23). ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Spatial statistics applications aim to study patterns, distributions,
and relationships of variables across different spatial locations in a
given spatial region. At present, the abundance of massive spatial
data volumes makes High-Performance Computing indispensable
for effectively handling the processing of high-resolution maps. Nu-
merous attempts to scale existing modeling and prediction methods
in spatial statistics have been proposed in the literature [1, 2, 4].
For Example, ExaGeoStat [1] is a high-performance computational

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SuperComputing Research Poster ’23, November 12-17, 2023, Denver, CO
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

framework tailored to address large-scale spatial data challenges in
climate and environmental studies. ExaGeoStat assumes that spatial
measurements reflect a Gaussian spatial random field. The corre-
sponding Gaussian log-likelihood is the most commonly used ob-
jective. In other literature related to machine learning, this concept
is commonly referred to as Gaussian regression [6]. This function
operates with various covariance matrices generated from prede-
fined covariance functions. Given the nature of spatial problems,
they typically involve many measurements taken at regular or ir-
regular locations across a geographical area. This necessitates that
the synthetic dataset generation process can handle dense exascale
matrices. The statistical framework is given by first denoting spa-
tial measurements (𝑧1, ..., 𝑧𝑁) := (𝑍 (𝒔1), ..., 𝑍 (𝒔𝑁)), where 𝑍 (𝒔)
denotes the realization of the Gaussian random field at location 𝒔.
We further assume that the mean function of this random field is
𝑚(𝒔). Often,𝑚(𝒔) will be constant, which serves as the prerequisite
of a stationary random field. The kernel matrix of the random field
is 𝚺(𝜽) :=

(
𝐶 (𝒔𝑖 − 𝒔 𝑗 ;𝜽)

)
𝑖 𝑗 , 𝑖, 𝑗 ∈ 1, ..., 𝑁 , where 𝑁 is the number

of spatial locations, 𝒔𝑖 − 𝒔 𝑗 is the spatial lag vector of location 𝒔𝑖
and 𝒔 𝑗 , and 𝐶 (· ;𝜽) is a stationary parametric covariance/kernel
function w.r.t. spatial lag vectors. Lastly, the frequent use of Gauss-
ian random fields in geospatial studies can be attributed to their
unique characteristic. Given a mean function and a kernel matrix,
a Gaussian random field can be uniquely defined [6]. This property
allows for precise and consistent spatial data modeling, which is
crucial in geospatial studies.

Moreover, ExaGeoStat uses a ’black-box’ (zero-gradient/derivative-
free) optimization method known as BOBYQA [5]. The BOBYQA
algorithm fits a quadratic model to the function to minimize (or
maximize) the log-likelihood function and obtains a set of statis-
tical parameters that represents the underlying spatial region. To
precisely evaluate the function value of log-likelihood, the MLE
objective function can be expressed with the following formula:

𝑙 (𝜽) = −𝑁

2 log(2𝜋) − 1
2 log |𝚺(𝜽) | − 1

2𝒁
⊤
𝚺(𝜽)−1𝒁 .

As dimensions increase, the computational demand typically grows
significantly. The state-of-the-art linear algebra system MAGMA
[3] can deal with matrix multiplication, determinant evaluation,
and matrix inversion on GPU hardware accelerators. However, we
also need fast covariance matrix generation on GPUs. Prior works
exclusively relied on the CPU for matrix generation. Instead, the
current work focuses on leveraging the power of GPUs to generate
the covariance matrix for spatial statistics applications.

2 PROPOSED GPU ACCELERATED SCHEMES
Namely, we proposed two schemes to implement :

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SuperComputing Research Poster ’23, November 12-17, 2023, Denver, CO Geng and Abdullah, et al.

51
07

6
55

22
5

59
04

9
63

00
1

67
08

1
71

28
9

75
62

5
79

52
4

83
52

1
91

80
9

Number of locations

0

2

4

6

8

10

Ex
ec

ut
io

n
ti

m
e

(s
)

Performance Evaluation (Power exp. kernel)
40-core Skylake
40-core Icelake
V100
A100

(a) Power exp. kernel.

51
07

6
55

22
5

59
04

9
63

00
1

67
08

1
71

28
9

75
62

5
79

52
4

83
52

1
91

80
9

Number of locations

4.0

4.5

5.0

5.5

6.0

Sp
ee

d-
U

p

Performance speed-up (Power exp. kernel)

40-core Icelake vs. A100
40-core Skylake vs. V100

(b) Power exp. kernel (speed-up).

51
07

6
55

22
5

59
04

9
63

00
1

67
08

1
71

28
9

75
62

5
79

52
4

83
52

1
91

80
9

Number of locations

4

6

8

10

12

14

16

18

Ex
ec

ut
io

n
ti

m
e

(s
)

Performance Evaluation (Matérn kernel)
40-core Skylake
40-core Icelake
40-core Skylake + V100
40-core Icelake + A100

(c) Matérn kernel.

51
07

6
55

22
5

59
04

9
63

00
1

67
08

1
71

28
9

75
62

5
79

52
4

83
52

1
91

80
9

Number of locations

5

10

15

20

25

Ex
ec

ut
io

n
ti

m
e

(s
)

Performance Evaluation (Matérn kernel)
40-core Icelake + A100
32-core Icelake + A100
16-core Icelake + A100

(d) Matérn kernel (scalability).

Figure 1: Performance evaluation on two different machines equipped with GPUs.

(1) Pure GPU: users can adopt this scheme when there are no
special functions that cannot be evaluated on the GPU, such as the
modified Bessel function of the second kind, which lacks a GPU-
based implementation. We have demonstrated the benefits of GPU
acceleration using the representative power exponential kernel for
covariance matrix generation. Namely,

𝐶1 (∥𝒉∥2) = 𝜎2 exp ©­«
−∥𝒉∥𝛽22

𝛽1
ª®¬ ,

where 𝜎2 is the variance, 𝛽1 and 𝛽2 are corresponding parameters
which uniquely decide the kernel function. In this scheme, matrix
M0 is initialized with zeros and split into tiles 𝑻 0 := (𝑇01, ...,𝑇0𝑛𝑡),
where 𝑛𝑡 denotes the number of tiles the matrix M0 has, locations
are then generated, and parameters are set on the CPU. Then, these
variables are copied to the GPU, and the corresponding kernel
function 𝑓 (·) := 𝐶1 (∥𝒉∥2) is evaluated on tiles 𝑻 0 to generate tiles
𝑻1 with entries 𝑓 (·). The tiles 𝑻 1 form the covariance matrixM1.

(2) Hybrid: users can employ this scheme in situations where
certain functions cannot be handled by the GPU. In such cases, we
first evaluate these functions on the CPU and store the results in
memory. Subsequently, the pre-computed matrices will be utilized
to generate the kernel matrices. We can show the advantage of GPU
acceleration using the representative Matérn kernel to generate the
covariance matrix. Namely,

𝐶2 (∥𝒉∥2) =
𝜎2

2𝜈−1Γ(𝜈)

(
∥𝒉∥2
𝛽

)𝜈
K𝜈

(
∥𝒉∥2
𝛽

)
,

where the modified Bessel function of the second kind is given by
K𝜈 . In this scheme, matrix M0 is initialized with zeros and split
into tiles 𝑻 0 (same split pattern as Pure GPU scheme), locations are
then generated, and parameters are set on the CPU. Then, these
variables are used to evaluate the corresponding special math func-
tion 𝑓1 (·) := K𝜈

(
∥𝒉∥2
𝛽

)
and these values are used as entries in

penultimate/intermediate tiles 𝑻 1. Utilizing 𝑻 1, the program uses
the GPU with the corresponding function

𝑓2 (·) :=
𝜎2

2𝜈−1Γ(𝜈)

(
∥𝒉∥2
𝛽

)𝜈
and generate the tiles 𝑻 2 by algebraic multiplication 𝑓1 (·) × 𝑓2 (·).
Finally, 𝑻 2 forms the kernel matrix M1. These schemes promise
a notable increase in efficiency and speed in handling such vast
computational tasks, as shown in the numerical experiment we
conducted.

3 RESULTS
We evaluated our proposed implementations by conducting a com-
parison with the CPU-based matrix generation on two distinct
systems. The first machine consists of a dual-socket 20-core Intel
Skylake Xeon Platinum 8260 CPU running at 2.40 GHz and an
NVIDIA Tesla V100 GPU SXM2 with 32GB memory. The second
machine comprises a dual-socket 28-core Intel Icelake Xeon Gold
6330 running at 2.00 GHz and an NVIDIA A100 Tensor Core GPU
with 40GB memory. To conduct the performance comparison, we
repeated each experiment five times and calculated the average
time consumption from the results.

Figures 1a and 1b illustrate the performance on various hardware
configurations when employing the power exponential kernel to
generate the covariance matrix. Herein, the pure GPU approach
demonstrates a significant speed-up, generating the power expo-
nential kernel matrix approximately 4X to 6X faster than the CPU.
As the number of locations increases, the advantages of utilizing
GPU become even more evident. Moreover, the performance of
the NVIDIA A100 GPU surpasses that of the NVIDIA V100 GPU
thanks to the hardware technology scaling observed across GPU
generations.

Figures 1c and 1d show the performance with the Matérn kernel.
The hybrid GPU/CPU outperforms the CPU version with Matérn.
Yet, some CPU computations lessen hybrid advantages over pure
GPU. We also witnessed the scalability of our hybrid implemen-
tation across various core counts, extending up to 40 cores on a
shared-memory system architecture.

REFERENCES
[1] Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. 2018.

ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore
Systems. IEEE Transactions on Parallel and Distributed Systems 29, 12 (Dec. 2018),
2771–2784. https://doi.org/10.1109/TPDS.2018.2850749 arXiv:1708.02835 [cs].

[2] Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G Genton, and David E Keyes. 2018.
Parallel approximation of the maximum likelihood estimation for the prediction
of large-scale geostatistics simulations. In 2018 IEEE international conference on
cluster computing (CLUSTER). IEEE, 98–108.

[3] Wieb Bosma, John Cannon, and Catherine Playoust. 1997. The Magma alge-
bra system. I. The user language. J. Symbolic Comput. 24, 3-4 (1997), 235–265.
https://doi.org/10.1006/jsco.1996.0125 Computational algebra and number theory
(London, 1993).

[4] Robert B Gramacy. 2016. laGP: large-scale spatial modeling via local approximate
Gaussian processes in R. Journal of Statistical Software 72 (2016), 1–46.

[5] M J D Powell. 2007. The BOBYQA algorithm for bound constrained optimization
without derivatives. (2007).

[6] Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian processes
for machine learning. MIT Press, Cambridge, Mass. OCLC: ocm61285753.

https://doi.org/10.1109/TPDS.2018.2850749
https://doi.org/10.1006/jsco.1996.0125

	Abstract
	1 Introduction
	2 Proposed GPU accelerated schemes
	3 Results
	References

