
Exploring Julia as a unifying end-to-end
workflow language for HPC on Frontier

Caira Anderson1,2*

Collaborators: William F. Godoy2; Pedro Valero-Lara2; Katrina Lee3,2; Ana Gainaru2; Rafael Ferreira
da Silva2; Jeffrey S. Vetter2

1Cornell University; 2Oak Ridge National Laboratory; 3University of Texas at Dallas
*Contact: cairaanderson1@gmail.com

Abstract
● Objective: Explore the performance and scaling of Julia as an alternative

language for high-performance computing (HPC) workflow component
development on Frontier.

● Approach: We evaluated a 7-point stencil reaction-diffusion solver,
GrayScott.jl using Julia’s HPC stack: MPI.jl, AMDGPU.jl, and ADIOS2.jl.

Background
● Two-language problem: Scientists prototype solvers for various problems in

high-productivity languages (e.g., Python), but need a solver in a traditional
HPC language (e.g., C++, Fortran) for larger computations and speed.

● Julia: Meant to solve the two language problem by combining features of
high-productivity languages with HPC capabilities.
○ High-productivity: Scientific/mathematical syntax, packaging

environment, mathematical libraries, interactive, flexible
○ High-performance: MPI.jl, GPU programming model packages

Simulation
● Reaction-diffusion Gray-Scott 2-variable model:

○ U, V output concentrations of reacting and diffusing chemicals.

Results (cont.)
● We evaluated the weak scalability (without I/O) of the GrayScott.jl simulation

on up to 4,096 GPUs or 512 nodes of Frontier.

Conclusion
● Julia achieved ~50% of the bandwidth of AMD’s HIP implementation of a

similar kernel.
● Julia’s JIT causes performance to suffer initially.
● Weak scalability with and without I/O was somewhat linear, can indicate

that Julia’s bindings are lightweight layers on MPI, ADIOS2.
● Julia was able to complete simulation on up to ~50% of the Frontier System.
● Next Steps:

○ Further evaluate other metrics of performance: Strong scalability,
compare with C++ version of GrayScott.jl.

○ Explore the capabilities of Julia’s tools for data visualization and
interactive computing with this HPC workload.

● Running GrayScott.jl simulation in Julia on Frontier:

Acknowledgements
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the US Department of Energy
Office of Science and the National Nuclear Security Administration. This research used resources of the Oak Ridge Leadership
Computing Facility and the Experimental Computing Laboratory (ExCL) at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725.

Fig. 3: V diffusing at t=109.

Implementation

Fig. 2: MPI_Send/Recv memory patterns in Cartesian
communicator decomposition used in simulation.

Fig. 1: 7-point stencil memory access for one variable in the parallel Gray-Scott solver.

#1 Configure Frontier environment by loading modules.
#2 Set MPI backend; Tell MPIPreferences to use Cray's MPICH.
julia --project=$GS_DIR -e 'using Pkg; Pkg.add("MPIPreferences")'
julia --project=$GS_DIR -e 'using MPIPreferences; MPIPreferences.use_system_binary(;
library_names=["libmpi_cray"], mpiexec="srun")'
Adds a custom branch in case the development version is needed (for devs to test new
features)
julia --project=$GS_DIR -e 'using Pkg;
Pkg.add(url="https://github.com/utkarsh530/AMDGPU.jl.git", rev="u/random")'
#3 Instantiate the project by installing packages listed in Project.toml.
julia --project=$GS_DIR -e 'using Pkg; Pkg.instantiate()'
Verify the packages are installed correctly.
julia --project=$GS_DIR -e 'using Pkg; Pkg.build()'
julia --project=$GS_DIR -e 'using Pkg; Pkg.precompile()'
#4 Select number of MPI processes per number of GPU’s when running the simulation.
srun -n 8 --ntasks-per-node=8 --gpus-per-node=8 --gpu-bind=closest julia --project=$GS_DIR
$GS_DIR/gray-scott.jl settings-files.json

Results
● We compared the speed of accessing the GPU allocated arrays 𝑢 and 𝑣 for 7

read (fetch/load) and 1 write operations of our GrayScott.jl kernel in Julia with
an AMD provided HIP implementation of a Laplacian kernel.

● We evaluated the bandwidth distribution of a run of GrayScott.jl across 4,096
Frontier GPUs and 20 simulation steps.

● We evaluated the weak scalability of the parallel I/O component, ADIOS2.jl,
saving only one output step.

Frontier Exascale System

System of Equations Discretization of Laplacian Term

Select GPU programming model (AMDGPU for Frontier) in settings-files.json.
###snippet from settings-files.json
{
 "L": 2048,
 "output": "gs-8MPI-8GPU-2048L-F64.bp",
 "precision": "Float64",
 "backend": "AMDGPU"
}

https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/GrayScott.html
https://github.com/utkarsh530/AMDGPU.jl.git
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

