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Abstract
● Objective: Explore the performance and scaling of Julia as an alternative 

language for high-performance computing (HPC) workflow component 
development on Frontier.

● Approach: We evaluated a 7-point stencil reaction-diffusion solver, 
GrayScott.jl using Julia’s HPC stack: MPI.jl, AMDGPU.jl, and ADIOS2.jl.

Background
● Two-language problem: Scientists prototype solvers for various problems in 

high-productivity languages (e.g., Python), but need a solver in a traditional 
HPC language (e.g., C++, Fortran) for larger computations and speed. 

● Julia: Meant to solve the two language problem by combining features of 
high-productivity languages with HPC capabilities.
○ High-productivity: Scientific/mathematical syntax, packaging 

environment, mathematical libraries, interactive, flexible
○ High-performance: MPI.jl, GPU programming model packages

Simulation
● Reaction-diffusion Gray-Scott 2-variable model:

○ U, V output concentrations of reacting and diffusing chemicals.

Results (cont.)
● We evaluated the weak scalability (without I/O) of the GrayScott.jl simulation 

on up to 4,096 GPUs or 512 nodes of Frontier.

Conclusion
● Julia achieved ~50% of the bandwidth of AMD’s HIP implementation of a 

similar kernel. 
● Julia’s JIT causes performance to suffer initially. 
● Weak scalability with and without I/O was somewhat linear, can indicate 

that Julia’s bindings are lightweight layers on MPI, ADIOS2. 
● Julia was able to complete simulation on up to ~50% of the Frontier System. 
● Next Steps: 

○ Further evaluate other metrics of performance: Strong scalability, 
compare with C++ version of GrayScott.jl.

○ Explore the capabilities of Julia’s tools for data visualization and 
interactive computing with this HPC workload. 

● Running GrayScott.jl simulation in Julia on Frontier: 
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Fig. 3: V diffusing at t=109. 

Implementation

Fig. 2: MPI_Send/Recv memory patterns in Cartesian 
communicator decomposition used in simulation.

Fig. 1: 7-point stencil memory access for one variable in the parallel Gray-Scott solver.

#1 Configure Frontier environment by loading modules.
#2 Set MPI backend; Tell MPIPreferences to use Cray's MPICH.
julia --project=$GS_DIR -e 'using Pkg; Pkg.add("MPIPreferences")'
julia --project=$GS_DIR -e 'using MPIPreferences; MPIPreferences.use_system_binary(; 
library_names=["libmpi_cray"], mpiexec="srun")'
### Adds a custom branch in case the development version is needed (for devs to test new 
features)
julia --project=$GS_DIR -e 'using Pkg; 
Pkg.add(url="https://github.com/utkarsh530/AMDGPU.jl.git", rev="u/random")'
#3 Instantiate the project by installing packages listed in Project.toml.
julia --project=$GS_DIR -e 'using Pkg; Pkg.instantiate()'
### Verify the packages are installed correctly.
julia --project=$GS_DIR -e 'using Pkg; Pkg.build()'
julia --project=$GS_DIR -e 'using Pkg; Pkg.precompile()'
#4 Select number of MPI processes per number of GPU’s when running the simulation. 
srun -n 8 --ntasks-per-node=8 --gpus-per-node=8 --gpu-bind=closest julia --project=$GS_DIR 
$GS_DIR/gray-scott.jl settings-files.json

Results
● We compared the speed of accessing the GPU allocated arrays 𝑢 and 𝑣 for 7 

read (fetch/load) and 1 write operations of our GrayScott.jl kernel in Julia with 
an AMD provided HIP implementation of a Laplacian kernel. 

● We evaluated the bandwidth distribution of a run of GrayScott.jl across 4,096 
Frontier GPUs and 20 simulation steps.

● We evaluated the weak scalability of the parallel I/O component, ADIOS2.jl, 
saving only one output step. 

Frontier Exascale System

System of Equations Discretization of Laplacian Term

# Select GPU programming model (AMDGPU for Frontier) in settings-files.json.
###snippet from settings-files.json
{
  "L": 2048,
   "output": "gs-8MPI-8GPU-2048L-F64.bp",
   "precision": "Float64",
  "backend": "AMDGPU"
}

https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/GrayScott.html
https://github.com/utkarsh530/AMDGPU.jl.git
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-finite-difference-docs-laplacian_part1/

