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ABSTRACT

Collective I/Os are widely used to transform small non-contiguous

accesses into large contiguous accesses for parallel I/O optimiza-

tion. The existing collective I/O techniques assume that computer

memory is volatile. They are limited both by the size of the buffer,

which must be small so data is not lost during a crash, and the

communication overhead that occurs during collective I/O. PMIO is

a proposed framework to utilize persistent memory (PMEM) for col-

lective I/O, as opposed to DRAM. First, we utilize a log-structured

buffer to take advantage of the non-volatility of PMEM. Second,

we utilize larger buffers to take advantage of the larger space avail-

able on less expensive PMEM. Finally, we implement a two-phase

merging algorithm to eliminate the communication overhead. The

poster provides an overview of collective I/O and its problems, an

introduction to PMEM, an outline of PMIO, and a brief discussion

of PMIO’s performance.
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1 INTRODUCTION

Collective I/O is a performance-critical facility in the MPI-IO library

used by most petascale HPC applications. It consists of two major

phases: communication phase and I/O phase. In the communication

phase, metadata exchange and data shuffling are executed among

processes on compute servers. In the I/O phase, I/O operations are

executed between compute and I/O servers [7]. With collective I/O

optimization, fewer and larger requests are generated to I/O servers

improving efficiency.

The existing implementations [7, 9, 10] of collective I/O have the

following issues. First, they use DRAM as a collective I/O buffer
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for data shuffling. Because the per-core DRAM capacity of com-

pute servers is limited on supercomputers, the extra memory used

for the buffer is also limited, leading to an excessive amount of

data shuffling when the buffer size is significantly smaller than the

size of file domains to be accessed. Second, they assume that the

collective I/O buffer is volatile. All data written in the collective

I/O buffer can be lost upon failures. Consequently, a large collec-

tive I/O buffer size increases the risk of losing data, especially in

supercomputing systems where frequent system failures can be

the norm [6]. They cannot recover the data in volatile I/O buffers.

Third, the communication overhead dominates the performance of

collective I/O. Our study shows that the communication time of

data shuffling accounts for up to 91% of the execution time of the

collective I/Os in the MPICH library [1].

2 DESIGN OF PMIO

In this paper, we design and implement a new collective I/O frame-

work, PMIO, which uses persistent memory (e.g., Intel Optane

DCPMM) to increase the size of collective I/O buffers for exploring

higher I/O efficiency and completely remove the communication

bottleneck of data shuffling. It has the following features.

Log-structured I/O buffers. We implement a log-structured

collective I/O buffer, to eliminate random accesses and explore the

high bandwidth of persistent memory. The log-structured buffer

is sequentially appended when serving write requests and cleaned

up when it is full using log management threads.

Two-level log merging. We design a two-level log merging

approach to replace the original two-phase I/Os to eliminate data

shuffling on compute servers. The two-level log merging consists

of merging on compute servers and merging on I/O servers respec-

tively. On the compute servers, data in the buffers are segregated

according to their destination I/O servers. When the log merging is

triggered, data written by different processes on the same compute

node are merged locally. No data shuffling is needed. The merged

data are then written to respective I/O servers. On the I/O servers,

the data from different compute servers are merged by operating

systems again before writing to disks. All log merging is executed

asynchronously in the background.

Enforcing crash consistency. Crash consistency is the recov-

erability of persistent data from memory in a consistent state after

system failures. PMIO enforces crash consistency by storing both

metadata and data of write requests in the collective I/O buffers. It

can recover the data by replaying log items in the metadata logs.

Consequently, we can safely increase the size of the collective I/O

buffer to exploit higher I/O efficiency.
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Figure 1: Overview of log-structured PMIO buffer.

Read buffers. PMIO supports reading from the collective I/O

buffers in persistent memory by maintaining an index structure in

memory. The index can be dynamically partitioned and placed in

DRAM or persistent memory according to the memory demand of

applications.

Data movement flow. As shown in Figure 1, each MPI process

appends data to one L0 sequentially when PMIO write is served.

When the L0 buffers are full, they are then merged to form L1. The

merging process is executed by a log management thread asyn-

chronously. Each L1 buffer stores data mapped to one I/O server.

When the L1 buffers are full, their data are sent to the corresponding

I/O servers in batch. PMIO relies on the operating systems of I/O

servers to merge the requests sent from multiple compute servers

before writing them to parallel file systems. Consequently, in our

design, MPI processes on compute servers only write to node-local

L0+L1 and do not need to send data to the processes on other com-

pute servers. This ensures that there is no communication for data

shuffling among processes on compute servers.

For PMIO reads, if the requested data are available in the L0+L1

buffers, they are returned immediately. Otherwise, they are served

from parallel file systems. We build an index structure in DRAM

for searching the requested data in L1.

3 EVALUATION

Experimental platforms. We use the Perlmutter supercomputer

in the experiments. It is a Cray EX with a peak performance of

about 59.9 petaflops [2]. Because Perlmutter does not have local

persistent memory on compute nodes, we model node-local per-

sistent memory using DRAM. Specifically, we store M-Logs and

D-Logs in in-memory file system tmpfs on compute nodes. We

then use mmap() to map these log files to process address space.

Finally, PMIO accesses M-Logs and D-Logs in tmpfs in the same

way as those in persistent memory. The emulation-based approach

has been used in other projects [3–5, 8]. Because we assume the

emulated PM has the same performance as DRAM, we did not add

additional latency for PM accesses.

Results: We have three observations from the results shown in

Figure 2. First, the write throughput of PMIO is 121X and 117X

higher than ROMIO and Naive-PM, respectively. This is because

PMIO avoids data shuffling among processes on compute servers

and removes the communication overhead. The log-structured

buffers promote sequential accesses in persistent memory, lead-

ing to improved I/O performance. Second, the read throughput of

PMIO is 100X and 151X higher than ROMIO and Naive-PM, respec-

tively. Because we can allocate a large space in persistent memory
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Figure 2: Performance of the benchmarks on a log scale.

for buffering data, the benchmarks can read the data in persistent

memory directly without accessing parallel file systems. As a result,

read throughput is also significantly improved for all the bench-

marks. Third, PMIO works for representative benchmarks and I/O

kernels using HDF5, which is widely adopted in HPC applications.

4 CONCLUSION

This poster, describes PMIO, a PMEM-aware collective I/O frame-

work to reduce communication on compute servers, improve data

access locality in PMEM, and enforce crash consistency for failure

recovery. PMIO uses log-structured collective I/O buffers in PMEM

to achieve high write bandwidth. It supports two-level log merging

to transform small, non-contiguous requests into large, contiguous

requests without expensive data shuffling. It records the metadata

of requests in PMEM to provide recoverability upon failures. Com-

pared to ROMIO collective I/Os using DRAM and PMEM as the

collective buffers, PMIO improves the I/O throughput by up to 122X

on the Perlmutter supercomputer.
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