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Problem Formulation Figure 3 shows evaluation results highlight effective sampling approaches and
iterative pruning for identifying the most optimal configuration. Multiple rounds
of sampling conducted, including a focused phase (s = 4) for optimal
configuration exploration.

HPC parameters vary In type and have dependencies.
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HPEE optimizes parameters by adapting configurations and resource Algorithm 1 HPEE Figure 4 illustrates model's behavior assessed by tuning hyperparameters R
allocation based on the round index. The algorithm iterates over : _ : : : and 7, showing variations in performance. It is evident that increasing R
rounds, determining configurations and resource allocation for each [nput: Maximum computational iteration (R), prune factor (z) ylelds more optimal results.
stage [2].
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