
Title:

Authors:

Exploring Userspace Memory Mapping for RDMA-Enabled Network-Attached Memory

DesignMotivation

Ivy Peng
Department of Computer Science,
KTH Royal Institute of Technology

Stockholm, Sweden

Maya Gokhale
Lawrence Livermore National

Laboratory, USA

Jennifer Faj
Department of Computer Science,
KTH Royal Institute of Technology

Stockholm, Sweden

• Memory-bound applications such as graph
processing applications often require large
memory capacity that exceeds a node’s
physical memory (Fig. 1).

• Currently, high-performance computing (HPC)
systems provide massive amount of compute
nodes and use resource over-provisioning to
support a diverse set of workloads.

• Network-attached memory can be used to back
an application’s virtual memory space when the
local compute node has exhausted its physical
memory, enabling compute and memory
disaggregation.

References
[1] Peng, Ivy, et al. "UMap: Enabling application-driven optimizations
for page management." 2019 IEEE/ACM Workshop on Memory Centric
High Performance Computing (MCHPC).
[2] Lu, Tao, et al. "Understanding and modeling lossy compression
schemes on HPC scientific data." 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2018.
[3] Lindstrom, Peter. "Fixed-rate compressed floating-point arrays."
IEEE transactions on visualization and computer graphics 20.12
(2014): 2674-2683.

Background:
• Umap[1] is a library that enables user-space

paging management through userfaultfd
• Datastores are supported on different tiers of

memory and storage hierarchy, e.g., NVMe
SSD

• Support application-specific configurations of
page size, concurrency control, buffer size,
and prefetching policies

• RPC and MPI were explored previously for
enabling network-attached memory

Fig 2: Overview Architecture

Fig 4: Throughput Improvement using
LZ4 compression

Recent Nvidia BlueField DPU provides hardware
acceleration of data compression. We compare the
compression ratio and time using (1) DPU deflate
hardware unit (2) LZ4 on DPU’s ARM core (3) LZ4
on Host side, on a set of real scientific datasets
from 12 scientific simulations[2]

Future WorksPreliminary Results

An example code snippet for allocating and accessing
an array on network-attached memory

Acknowledgement
This work was partially performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under contract No. DE-AC52-07NA27344 with support from the
DOE Exascale Computing Project. LLNL-POST-854442.

•Memory regions are registered to offload page
fault handing into user space and remote memory
regions are created and mapped (Fig. 2)
•Internal manager schedules fetch requests to
Fillers and evict requests to Evictors
•Workers create work request to one-sided read
and write from memory regions over the network
•Page-level lossless and lossy data compression
for reducing data movement

Fig 1: Ligra graph processing framework
performs in-memory graph processing. It is
bound by memory capacity of a node
because it allocates large intermediate data
structures for graph pre-processing

Testbeds: dual-socket AMD EPYC 7401 at Livermore
computing, Bluefield-2 NIC interconnected with 2x53.125
Gbps link through an IB switch. The peak BW by linux-
rdma/perftest is 11700MB/s.
Benchmark: extended from the original STREAM with
allocation of main data objects in the network-attached
remote memory regions

include "umap/umap.h”

//create a network-attached datastore
Umap::Store* store_a = new Umap::StoreNetwork("a", length, network_client,

compression_mode);

//create a memory mapping to the datastore
double* a = (double*) umap_ex(NULL, length, PROT_READ|PROT_WRITE,

UMAP_PRIVATE, 0, 0, store_a);

//access the memory region as if in main memory
for (size_t j=0; j<array_size; j++) {
 a[j] = 1.0;
}

Eric Green
Lawrence Livermore National

Laboratory, USA

ZFP[3]: Lossy compression of floating-point data

LZ4: Fast lossless compression library

Implementation in C++/C:

libibverbs: RDMA verbs in user space

userfaultfd: page faults handling in user space

Finding IV: some floating-point datasets could even have
higher compressed data size by LZ4 than their original size

Summary:
In this work, we extend a userspace paging
management library to enable memory mapping
RDMA-enabled memory regions over network. We
show that an optimal userspace control of worker
threads achieves up to 70% improvement. Using
LZ4 data compression could significantly reduce
data movement while sustaining performance, but in
some cases may reduce performance. Future work
will explore online adaptation of compression mode
and hardware offloading.

Fig 5: Network Traffic
with and without LZ4

Finding I: The concurrency level of both Filler and Evictor
workers have a high impact on the performance. Userspace
control is important for performance tuning.

Fig 3: The performance obtained at an increased number of
filler and evictor workers

Finding II: Using data compression at page level could
improve the overall throughput (~50% in Fig. 4) when the
reduced network traffic outweighs the additional
compression and decompression overhead.

Finding III: Lossy
compression may be
more effective for
reducing data movement
over network than
lossless compression for
some floating-point values

Fig 6: Throughput with varying
numbers of Filler and Evictor workers

Fig 7: Compression ratio and performance of DEFLATE and
LZ4 on ARM and AMD hosts

Jacob Wahlgren
Department of Computer Science,
KTH Royal Institute of Technology

Stockholm, Sweden

