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Abstract
Memory-bound applications like graph processing applica-
tions often require large memory capacity beyond a sin-
gle node. Current HPC systems overprovision compute and
memory resources to meet requirements of diverse work-
loads. In this work, we explore using network-attached mem-
ory for disaggregating memory from compute nodes to sat-
isfy the demand of memory-intensive workloads. We pro-
vide a library that enables applications to access network-
attached memory as if in its main memory, and exposes crit-
ical controls to userspace, including concurrency level and
page-level data compression. Our preliminary results show
that the flexibility of tuning concurrency and compression
is important for improving performance and reducing data
movement. Also, our results on 12 scientific data sets indicate
that DPU compression offloading could significantly speed
up compression and is important for future optimizations.
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Introduction. The memory capacity of a node determines
the feasibility of running large-scale applications, especially
for memory-bound applications with high memory foot-
prints. As today’s HPC systems employ tightly coupled com-
pute and memory resources in each node, users must re-
quest enough nodes to fulfill thememory requirement, which
could leave the computing resources underutilized. For in-
stance, Ligra[5] is a popular in-memory graph processing
framework that allocates large intermediate data structures
during graph preprocessing, severely limiting the scale of
problems feasible on an HPC system. Network-attached
memory is a form of disaggregated memory where a pro-
cess’s virtual memory is backed (partially) with the physical
memory of another node. Many previous works, e.g., infin-
iswap [1], have proposed kernel-based solutions for lever-
aging network-attached memory. Instead, in this work, we
explore a userspace paging library that enables applications
to access network-attached memory as if in its main memory.
In particular, critical controls, such as concurrency level and
page-level data compression, are exposed to userspace for
flexible application-specific tuning.
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Figure 1. Overall architecture of RDMA-enabled backend
storage for extending a process’s memory space on Node 1.

Design and Implementation.We extend a user-space pag-
ing fault handler library called UMap [4] to support network-
attached remote memory regions (MRs) with RDMA-enabled
data transfer. Fig. 1 illustrates the overall architecture, where
an application process A runs on Node 1 while the physical
memory on Node 2 is used to back parts of process A’s virtual
memory address space, e.g., A and B. The library provides
simple APIs for an application to create network-attached
datastores and then map them into its virtual address space
so that an application can access it at byte granularity. Inter-
nally, the library manages RDMA-enabled memory regions
and their mapping to application’s virtual memory address.
Leveraging the fact that a single page cannot be paged in
and out concurrently, two separate completion queues are
managed internally for enhanced parallelism. The datastores
are managed in equal-sized pages whose size can be con-
trolled in userspace. When a page is accessed, a Filler thread
creates a work request to read its mapped remote MR and
then caches it in Node 1’s main memory. When free space
in the page cache is low (the size is controlled in userspace),
Evictor threads evict old pages and write dirty pages back to
its mapped remote MR. The user can control which compres-
sion mode to enable on pages to reduce data movement on
network. LZ4 is used for lossless compression, and ZFP[2]
for lossy compression. When compression is enabled, a Evic-
tor will compress a page before sending over network and
record its compressed size in a global metadata, and a Filler
will decompress a page if it is marked as compressed.
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Figure 2. The measured throughput from network-stream
copy kernel obtained using different numbers of Filler (left)
and Evictor (right) workers.

Figure 3. The measured throughput (left) and data move-
ment over network (right) using the default implementation
and the implementation with LZ4 data compression.

Preliminary Results.We evaluated the library on a cluster
at Livermore Computing, with two AMD EPYC 7401 CPUs
and one Bluefield-2 NIC per node, and 100 Gbps Ethernet.
The peak bandwidth measured by linux-rdma/perftest is
11700MB/s.We extended the STREAM benchmark to allocate
main data structures in network-attached remote memory
regions. We configured the page cache size to have 40% of
memory footprint offloaded to network-attached memory.
Fig. 2 presents a scaling test of the number of Filler and

Evictor threads, respectively. The results show that the two
types of workers have a high impact on performance. The
performance is more sensitive to the number of evictors as
the eviction task has higher latency. With eight fillers and
16 evictors, the throughput closely approximates the peak
bandwidth of the network. The results show that userspace
configuration is critical for performance optimization.
We evaluate the effect of data compression by enabling

LZ4 compression. Fig. 3 shows that enabling the compression
increases the throughput of four kernels by 50% - 70%. We
quantify the data movement using Linux’s rdma-statistic
counters. Note that the y-axis in the right panel of Fig. 3
is in logarithmic scale, and it shows that data movement is
reduced by an order. However, as a lossless compression, we
also found that LZ4 may result in a compressed size higher
than the original, depending on the data values. Switching
to lossy compression could be beneficial for such cases. Our
current implementation disables compression when such a
scenario is detected, while an online adaptive scheme can be
designed for future optimization.

Figure 4. Compression ratio and performance using Blue-
Field compression hardware unit (DEFLATE) and software
compression (LZ4) on ARM and AMD Host
Recent programmable NICs like Nvidia’s Bluefield DPU

provide a hardware unit for compression. To evaluate the
potential of offloading data compression onto the network,
we used a set of real scientific datasets [3] and evaluated the
compression ratio and time using DPU’s hardware unit (DE-
FLATE), DPU’s general ARM core, and the AMD host core.
Fig. 4 shows that DPU’s compression ratio (green) is always
lower than the software compression (blue), indicating fur-
ther reduced data movement. On average, DPU’s hardware
compression achieves 4× speedup of the AMD host and 12×
of DPU’s ARM core.
Conclusions and Future Work. In this work, we extend
a userspace paging management library to enable memory
mapping RDMA-enabled memory regions over network. Our
results show that adapting concurrency improves through-
put by 4×, and enabling compression reduces data movement
by an order. For future work, we evaluate hardware-based
compression offloading to DPU using real scientific datasets
and highlight the potential of significant performance gain.
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