
The impact of process topology on RMA programming models:
A study on NERSC Perlmutter

Nikodemos Koutsoheras,
Abhinav Bhatele

University of Maryland, College Park
nikos@umd.edu,bhatele@cs.umd.edu

Sayan Ghosh, Joshua Suetterlein,
Nathan R. Tallent

Pacific Northwest National Laboratory
{sayan.ghosh,joshua.suetterlein,nathan.tallent}@pnnl.gov

Abstract
Contemporary communication latency benchmarks usually mea-

sure the performance of pairwise exchanges without considering
specific process topology, which demonstrates little variation from
the mean behavior since the underlying communication pattern
is sufficiently benign for modern networks. Distributed-memory
applications often have to deal with overlapped data distributions,
which governs the underlying topology of the processes, involving
an irregular mix of intranode and internode transfers. One-sided
communication or Remote Memory Access (RMA) interfaces can
mitigate this irregularity by separating the asynchronous com-
munication and synchronization, exposing remote memory access
features via one-sided communication semantics to a global address
space.

Performance of the most popular asynchronous RMA inter-
faces like MPI RMA and SHMEM has steadily improved over the
past years due to better support from the hardware vendors and
community-driven programmingmodel standardization efforts. Pre-
viously on HPE™ Cray™ platforms, Partitioned Global Address
Space (PGAS) models such as SHMEM were known to outperform
MPI RMA, however, currently we observe better or competitive
performance of MPI RMA as compared to SHMEM on NERSC Perl-
mutter supercomputer.

In this work, we discuss the performance of SHMEM and MPI
RMA (comparing with MPI point-to-point) for grid and graph pro-
cess topologies on NERSC Perlmutter via average and 99th per-
centile latencies. Our findings indicate that RMA exhibits up to
2.5× better performance for medium to large data sizes as com-
pared to point-to-point for diverse process topologies.

1 Generating Process Topologies
Process topology It is the logical arrangement of processes as

per application data distribution in the form of a cartesian multi-
dimensional grid or a graph (a process is represented as a “node”,
with lines or edges connecting the nodes). While the number of
(process) neighbors for a particular (process) node remains fixed for
a process grid topology, contrasting a process graph topology where
nodes may have different set of neighbors. As such, communication
involving a process and disproportionate number of neighbors can
lead to load imbalance and adversarial one-to-many communication
patterns.

Our approach To control the layout of the underlying process
topology, we rely on synthetically generated data; particularly gen-
erating a Random Geometric Graph (RGG) across the processes
in parallel [2], such that for the baseline topology every process
shares data with its two adjacent processes, depicting a 1D stencil

Parallel RGG 
generator

Extract process 
topology

Adjust baseline 
topology/data

Latency evaluations 
(MPI/SHMEM)

File system
Store generated (and 
adjusted) graph

Store process topology 
as a graph

Figure 1: Our approach for considering process topologies.

(grid) pattern. The baseline topology can be modified by adding
a customizable amount of “cross” edges to the original RGG, in-
creasing the overall degree of the neighbors in the process graph.
Our approach is shown in Fig. 1, we provide options to extract the
process topology corresponding to the original RGG as a binary
file to be processed later by benchmarks, thereby saving significant
memory and computation requirements for generating an RGG. We
perform data transfers between process neighbors in the topology
graph, shown below.

Algorithm1 Test for data transfer latencies under process graph topology.
Input:𝐺 = (𝑉 , 𝐸 ) , (undirected) process topology graph,𝐺 .

1: for 𝑠 = 1, 𝑠∗=2, while 𝑠 <= 4𝑀𝑖𝐵 do
2: for 𝑢 ∈ adj(𝑚𝑦_𝑟𝑎𝑛𝑘 ) do {my process neighbors}
3: async put 𝑠 bytes to rank 𝑢
4: sync {complete outstanding communication}

Existing benchmarks Current MPI and SHMEM benchmarking
efforts rarely considers the impact of irregular process topologies,
which play a vital role in determining sustainable performance
for communication-bound applications. We focus on adapting the
underlying process layout from fixed grid to dynamic graph topolo-
gies, allowing users the flexibility to measure the performance (fol-
lowing the best practices of reproducible MPI benchmarking [4])
of one-sided community standardized interfaces (MPI RMA and
SHMEM), which was originally designed for expressing irregular
communication scenarios.

2 Evaluations
Platform details We use the CPU partition of the NERSC Perlmut-

ter supercomputer [9] (Cray™ Shasta architecture), which includes
four-way 2.45GHz AMDMilan EPYC™ 7763 CPU nodes comprising
of 64 cores, 256MB L3 cache, 512GB DDR4 memory with HPE™
Slingshot interconnect fabric (based on Dragonfly topology) con-
nected to Cassini NIC. Recent study has reported Slingshot intercon-
nection network to be less susceptible to congestion as compared
to the previous networks [1, 7]. We use GCC 11.2 compiler (PrgEnv-
gnu/8.3.3), cray-mpich/8.2.25 (MPI) and cray-openshmemx/11.5.6
(SHMEM) for the evaluations. Both SHMEM andMPI RMA uses OFI
libfabric [3] as the low-level network API. We compare our results



Figure 2: Avg. and 99th% latencies for 8–64 nodes (16 processes/node) with +2% and +5% extra edges.

with OSU Microbenchmarks suite [5] v7.6.2 (OSU multi-latency,
measures average latencies between multiple process pairs). We use
the Perlmutter all-flash scratch file system (aggregate bandwidth
>5TB/s) to access the input binary process topology files, overall file
I/O is <1.5% of the time to run a test. Our code is available in the fol-
lowing GitHub repository: https://github.com/sg0/neve/tree/rma.

Tests The test kernels comprise of communication functions
(like MPI_Put, shmem_char_put_nbi and MPI_Isend/MPI_Irecv)
and synchronization statements (time includes both, with repe-
titions and ensuring cold cache), following the pattern in pseu-
docode 1. We use passive mode synchronization for MPI RMA,
using MPI_Win_flush_all for synchronization; whereas we use
shmem_quiet for waiting on outstanding one-sided communica-
tion on symmetric heap for SHMEM. For the MPI point-to-point
case, we use nonblocking send/receive, with MPI_Waitall for com-
pleting outstanding request handles. We use bytes as the unit of
data transfer, and for every data size calculate average and 99th
percentile execution times.

Figure 3: Avg. latencies for 2-processes within and across nodes.

Latency measurements We use regular process topology where
a process communicates with at most two neighbors, and then
consider two more configurations to expand the #edges in the
process graph topology by increasing the number of cross edges in
the original RGG by 2% and 5% of the overall #edges. As shown in
Table 2, just by adding an extra 2% of the overall edges in an input
baseline graph, it is possible to make the induced process graph
up to about 300× dense, affecting the average and 99th% latencies
associated with the data movement.
Table 1: MPI/SHMEM in-
structions counts on NERSC
Perlmutter (instructions
collected on one process
using Intel SDE [6]).
functions #instructions

shmem_char_put_nbi 192
MPI_Put 231
MPI_Isend 296
MPI_Irecv 204

Table 2: Baseline and updated
process graph topologies.

nodes
/#vertices

#edges
base. +2% +5%

1(16) 30 240 240
2(32) 62 992 992
4(64) 126 4,032 4,032

8(128) 254 16,224 16,256
16(256) 510 62,468 65,252
32(512) 1,022 210,340 257,340
64(1,024) 2,046 595,060 918,492

Figure 4: Avg. and 99th % latencies for 1–4 nodes (16 processes/node).

Observations Our key takeaways are as follows:
• Two processes measurements (Fig. 3) are not indicative of perfor-
mance differences at scale when there are more processes/node
(point-to-point performance exceeds RMA for a single process/
node, but we see opposite trends with more processes/node).

• OSU microbenchmark reports best case latencies with little vari-
ability, whereas the gap between average and 99th percentile
latencies surge to orders of magnitude with increasing the node
counts (see annotations captured in Fig. 2 vs. Fig. 4).

• For regular topologies on 1–64 nodes, bothMPI RMAand SHMEM
exceed the performance of point-to-point by up to 3.5×; for irreg-
ular topologies, RMA exceeds the performance of point-to-point
by up to about 2× for medium to large data (Figures 4 and 2).

• Both SHMEM and MPI RMA demonstrate the best sub-1`s la-
tency for small data sizes considering regular topology. On a
single node (Fig. 4), SHMEM depicts 30% better performance up
to 8KiB (#instructions in SHMEM are less than MPI, Table 1), but
MPI RMA demonstrates better performance by up to 1.5× for
larger data sizes.

• As per cray-mpich manual, MPI RMA on NERSC Perlmutter
should use XPMEM [8] for single node large message transfers;
but, our emulation instructions (via Intel SDE [6]) does not find
any entry for XPMEM APIs. On the other hand, SHMEM emula-
tion reveals XPMEM usage.

• On 8–64 #nodes (Fig. 2), SHMEM can exceed the performance of
MPI RMA by up to about 2.5× for data sizes beyond 32KiB.

https://github.com/sg0/neve/tree/rma


References
[1] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Katherine E. Isaacs.

There goes the neighborhood: performance degradation due to nearby jobs. In Pro-
ceedings of the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’13. IEEE Computer Society, November 2013.
URL http://doi.acm.org/10.1145/2503210.2503247.

[2] Sayan Ghosh, Nathan R Tallent, and Mahantesh Halappanavar. Characterizing
performance of graph neighborhood communication patterns. IEEE Transactions
on Parallel and Distributed Systems, 33(4):915–928, 2021.

[3] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D Russell, Howard
Pritchard, and JeffreyM Squyres. A brief introduction to the openfabrics interfaces-
a new network api for maximizing high performance application efficiency. In
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pages 34–39.
IEEE, 2015.

[4] Sascha Hunold and Alexandra Carpen-Amarie. Reproducible mpi benchmarking
is still not as easy as you think. IEEE Transactions on Parallel and Distributed
Systems, 27(12):3617–3630, 2016.

[5] Dhabaleswar K Panda et al. Osu micro-benchmarks, 2018.
[6] K Raman. Calculating “flop” using intel software developmentemulator (in-

telsde)(march 2015).
[7] Daniele Sensi, Salvatore Girolamo, Kim McMahon, Duncan Roweth, and Torsten

Hoefler. An in-depth analysis of the slingshot interconnect. in 2020 sc20: Inter-
national conference for high performance computing, networking, storage and
analysis (sc). IEEE Computer Society, pages 481–494, 2020.

[8] Michael Woodacre, Derek Robb, Dean Roe, and Karl Feind. The sgi altixtm 3000
global sharedmemory architecture. Silicon Graphics, Inc, 44, 2005.

[9] Charlene Yang and Jack Deslippe. Accelerate science on perlmutter with nersc.
Bulletin of the American Physical Society, 65, 2020.

http://doi.acm.org/10.1145/2503210.2503247

	Abstract
	1 Generating Process Topologies
	2 Evaluations
	References

