
A Methodology for Accelerating
Variant Calling on GPU

Beatrice Branchini, Alberto Zeni, Marco D. Santambrogio
beatrice.branchini@pnnl.gov, {alberto.zeni, marco.santambrogio}@polimi.it

CREDITS
Blood Test icon created by kosonicon - www.flaticon.com
Medicines icon created by kosonicon - www.flaticon.com

REFERENCES
[1] https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller
[2] https://github.com/MauricioCarneiro/PairHMM/blob/master/test_data/10s.in

Java
Baseline

Experimental Results
Conclusions
We present an high-performance GPU
accelerator for the PairHMM algorithm featuring
the dynamic memory swap to provide support
for long sequences. Experimental results show
8154× and 1.6× performance improvements
against the software baseline and the fastest
hardware-accelerated solution, respectively.

Th
ro

ug
hp

ut
 [G

CU
PS

]

Dataset configuration

GPU: NVIDIA Tesla V100 connected to a dual-socket Intel Xeon Platinum 8167M

HaplotypeCaller execution time:

Variant Calling: process aiming
at identifying genetic mutations

PairHMM (96%)

Context Definition

GATK
HaplotypeCaller[1]

represents one of the
most used tools
to highlight such

variants

The core of this tool
is the PairHMM

algorithm

Furthermore, available hardware-based solutions
lack in flexibility with respect to input data

Proposed Solution
Intra-task parallelism

Only storing
three anti-
diagonals

Processed section Thread

Inter-task parallelism

Ke
rne

l

Block

Dynamic
memory
swap that
tailors
memory
resources to
increase
throughput
and usability

T
G

G
A

A
C

G
C

T
A

C
C

C
T

A
T

G
G

C
A

A
G

G

Host

Compute
memory

requirements (R)

Evaluation against
a threshold (T)

GPU

Alignment leveraging
global memory

Alignment leveraging
shared memory

R > T

R < T

Acceleration of the
PairHMM algorithm
on GPU

Pre-computing the required
resources for each alignment

allows for fine-grained tailoring
of the allocated memory at

runtime.

This enables us to support any
alignment length and to exploit

the most performant GPU
memory for every workload.

Exposing intratask and
intertask parallelism
crucial to achieve high
performance, and
featuring a novel dynamic
memory swap mechanism
to increase both flexibility
and throughput

Primary
Analysis

Secondary
Analysis

Tertiary
Analysis

Genomic pipeline

Evaluation of
the dynamic

memory
swap on the

GPU
throughput,

varying
sequence

length

1

Evaluation
with the 10s

dataset[2],
comparing the

attained
performance

with State-
of-the-Art
solutions

2

Java
Baseline

Sp
ee

du
p

w.
r.t

. J
av

a
ba

se
lin

e
- L

og

1.67X

Wavefront-based
computational

pattern,
same approach
as in the Smith-
Waterman and
Needleman-

Wunsch algorithms

Multiple
alignments
computed in

parallel on the
device,

mapping each
pair of

sequences to
a GPU block.
The number

of alignments
determines the

number of
blocks

spawned on
the device

Acknowledgments
This work has been partially supported by Compiler
Frameworks and Hardware Generators for Innovative
US Government Design. The Authors would also like to
thank Oracle Research Program for the Oracle Cloud
Credits

8154X

